
ECE 305 Exam 2 – Prof. Peter Bermel 

NAME:_____FULL SOLUTION___________              PUID:__________________________ 

ECE 305 – Fall 2017 

Exam 2 – Thursday, October 5, 2017 

This is a closed book exam. You may use a calculator and the formula sheet at the end of 
this exam. Following the ECE policy, the calculator must be a Texas Instruments TI-30X IIS 
scientific calculator. 
 
To receive full credit, you must show your work (scratch paper is attached). 
The exam is designed to be taken in 50 minutes (or less). Be sure to fill in your name and 
Purdue student ID at the top of the page. DO NOT open the exam until told to do so, and 
stop working immediately when time is called. The last page is an equation sheet, which 
you may remove, if you want. 
 
100 points possible, 

I) 40 points (8 points per question) 
II) 30 points 
III) 30 points 

 
 
 

Course policy 
----------------------------------‐--‐--‐--‐--‐--‐--‐--------‐--‐--‐--‐--‐--‐--‐--‐--‐--‐--‐--‐--‐--‐--‐--‐--‐--‐ 

If I am caught cheating, I will earn an F in the course & be reported to the Dean of Students.  

       I repeat:   _____________________________________________________________________________ 

                           _____________________________________________________________________________         

       Signature: _____________________________________________________________________________ 
  



ECE 305 Exam 2 – Prof. Peter Bermel 

Part I: Answer the 5 multiple choice questions below by entering them on your IDP-15 Scantron. 

1 (8 points). The diagram to the left is drawn to scale. What is true about the 

the two E field profiles (solid and dashed)?  

A. The built-in potential Vbi is negative for one of these. 

B. Voltage is applied to transition from one to the other. 

C. They are from identical pn junctions, reversed along the x-axis. 

D. More negative charges exist in the depletion region than positive charges 

and vice versa for the separate profiles. 

E. None of the above. 

2 (8 points). What assumption(s) are made to derive the minority carrier diffusion equation (MCDE) 

given in the Formula Sheet? 

A. Flat conduction and valence bands 

B. Steady-state conditions 

C. Low carrier injection 

D. A and B 

E. A and C 

3 (8 points). What is the correct ordering of processes before doping in silicon? 

A. Apply resist, expose, etch, develop, remove resist 

B. Expose, apply resist, develop, etch, remove resist 

C. Apply resist, expose, develop, remove resist, etch 

D. Apply resist, expose, develop, etch, remove resist  

E. Apply oxide, expose, develop, remove resist, etch 

4 (8 points). What does the diagram below (E-field vs position x) represent? 

A. Sheet charge embedded in a uniformly doped semiconductor 

B. Trapped charges at the interface of a pn junction   

C. E-field from voltage applied across pn junction 

D. E-field from voltage applied across uniformly-doped semiconductor 

E. Linear variation of dopant concentration across pn junction 

 

5 (8 points). What assumption(s) are made in the equation pertaining to pn junctions: NDxn=NAxp? 

A. All mobile charge carriers recombine in the depletion region 

B. All acceptors and donors are fully ionized 

C. The p and n-type materials are the same, forming a homojunction 

D. A and B 

E. A, B and C 
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Part II (Free Response, 30 points) 

Assume that an n-type region of spatially uniform crystalline silicon with 𝜇𝑝 = 500 cm2/V ∙ s and 

lifetime 𝜏𝑝 = 10 s is uniformly illuminated by a photon flux 𝐺𝐿 = 1019 /cm3∙s, which starts at 𝑡 = 0 

and is then switched off at 𝑡 = 50 s. 

a. Write down the minority carrier diffusion equations that describes its behavior from 𝑡 = 0 to 

𝑡 =  100 s. You may write different equations for different time segments. 

𝜕∆𝑝

𝜕𝑡
= −

∆𝑝

𝜏𝑝
+ 𝐺𝐿   0 < 𝑡 < 50𝜇𝑠 

𝜕∆𝑝

𝜕𝑡
= −

∆𝑝

𝜏𝑝
             𝑡 ≥ 50𝜇𝑠 

Holes are our minority carriers. We can drop the diffusion term (with its two spatial derivatives) 

here, because of spatial uniformity. Because of the time-dependent behavior of the generation and 

recombination, we must keep all the other terms. 

 

b. Sketch the time-dependent behavior of the excess minority carrier concentration from 𝑡 = 0 to 

𝑡 = 100 s. Be sure to label both the x and y axes, and include at least 3 distinct numerical 

values on each axis (with justification). 

 

Boundary condition: ∆𝑝(𝑡 = 0) = 0, since illumination starts at 𝑡 = 0;  

General solution: ∆𝑝 = 𝐺𝐿 𝜏𝑝 + 𝐵𝑒
−

𝑡

𝜏𝑝  

0=𝐺𝐿 𝜏𝑝 + 𝐵  implies B=−𝐺𝐿 𝜏𝑝 

∆𝑝 = 𝐺𝐿 𝜏𝑝 − 𝐺𝐿 𝜏𝑝𝑒
−

𝑡
𝜏𝑝          0 ≪ 𝑡 < 50𝜇𝑠 

 

Boundary condition: ∆𝑝(𝑡 = 50𝜇𝑠) ≈ 𝐺𝐿 𝜏𝑝 ; General solution: ∆𝑝 = 𝐵𝑒
−

𝑡

𝜏𝑝  

 

𝐺𝐿 𝜏𝑝 = 𝐵𝑒
−

50𝜇𝑠

𝜏𝑝  implies B=𝐺𝐿 𝜏𝑝𝑒
50𝜇𝑠

𝜏𝑝  

 

∆𝑝 = 𝐺𝐿 𝜏𝑝𝑒
50𝜇𝑠

𝜏𝑝 𝑒
−

𝑡
𝜏𝑝 = 𝐺𝐿 𝜏𝑝𝑒

−
𝑡−50𝜇𝑠

𝜏𝑝       𝑡 ≥ 50𝜇𝑠 

Thus the sketch should resemble: 
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c. Sketch the excess minority carrier concentration vs position at 𝑡 = 100 s if all conditions are 

same as the previous case, but the sample is infinitely long and the surface at 𝑥 = 0 has a 

fixed excess minority carrier concentration ∆𝑝(𝑥 = 0) =  1015 /cm3. 

Infinitely far away from surface there is no spatial dependence of p, so it is same as II. B, i.e.  

p(x=∞, t=100 s)= 𝐺𝐿 𝜏𝑝𝑒
−

(100−50)𝜇𝑠

𝜏𝑝 ≈ 0  

p(x=0)= 1015 /cm3 

At t=100 s p has achieved steady state, so we can remove the partial differentiation with time. 

We can also remove generation, since 

there is no illumination. 

 0 = 𝐷𝑝
𝜕2∆𝑝

𝜕𝑥2 −
∆𝑝

𝜏𝑛
; General solution: 

p=A𝑒
−

𝑥

𝐿𝑝  +B𝑒
𝑥

𝐿𝑝  

 Applying the boundary conditions: 

 B=0, as otherwise p will 

exponentially blow up at x=∞ instead 

of equating to 0. 

 p(x=0)=A𝑒
−

0

𝐿𝑝 or A=1015  

 Therefore: p=1015𝑒
−

𝑥

𝐿𝑝. 
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Part III (Free Response, 30 points) 

The electric field versus position for a crystalline silicon (𝐾𝑠 = 11.68) pn homojunction at room 

temperature (𝑇 = 300 K) is given by the following graph (may not be precisely to scale): 

 

For this problem, assume that the junction is abrupt at 𝑥 = 0 with a flat doping profile on each side (p-

doped on the left, and n-doped on the right), ℇ(0) = −10 kV/cm, n-type depletion length 𝑥𝑛 = 620 

nm, and the p-type depletion length 𝑥𝑝 = 100 nm.  

a. What is the built-in voltage 𝑉𝑏𝑖 obtained using depletion approximation? 

𝑉𝑏𝑖 =
1

2
ℇ(0)𝑊 = 0.5 ∙ (−10

kV

cm
) ∙ (720 nm) = 0.36 V 

 

 

 

 

 

 

 

Continued on next page…. 
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Part III (Continued)     

b. What is the value of 𝑁𝐴 in the p-type region, and 𝑁𝐷 in the n-type region, if the depletion 

approximation is used? 

From the formula sheet, we can apply 
𝑑ℇ

𝑑𝑥
=

𝜌

𝐾𝑠𝜖𝑜
. 

On the left-hand side, 
𝑑ℇ

𝑑𝑥
=

−𝑞𝑁𝐴

𝐾𝑠𝜖𝑜
, so ℇ(0) =

−𝑞𝑁𝐴𝑥𝑝

𝐾𝑠𝜖𝑜
, so 𝑁𝐴 =

|ℇ(0)|𝐾𝑠𝜖𝑜

𝑞𝑥𝑝
= 6.5 ∙ 1015 cm−3. 

On the right-hand side, 
𝑑ℇ

𝑑𝑥
=

𝑞𝑁𝐷

𝐾𝑠𝜖𝑜
, so 𝑁𝐷 =

|ℇ(0)|𝐾𝑠𝜖𝑜

𝑞𝑥𝑛
= 1.04 ∙ 1015 cm−3. 

Alternate solution (not recommended):  

𝑉𝑏𝑖 =
𝑘𝑇

𝑞
ln (

𝑁𝐷𝑁𝐴

𝑛𝑖
2 ), so 𝑁𝐷𝑁𝐴 = 1020𝑒0.36/.025cm−6 = 1.8 ∙ 1026 cm−6  

𝑁𝐴𝑥𝑝 = 𝑁𝐷𝑥𝑛  𝑁𝐴/𝑁𝐷 = 𝑥𝑛/𝑥𝑝 = 6.2  6.2𝑁𝐷
2 = 1.8 ∙ 1026 

𝑁𝐷 = 5.4 ∙ 1012 cm−3; 𝑁𝐴 = 3.3 ∙ 1013 cm−3 

 

c. Using the depletion approximation, calculate the 𝑛𝑝 product just outside the right side of the 

junction (at 𝑥 = 𝑥𝑛
+). How would this value change if you applied a forward bias of 0.28 V? 

From the formula sheet, we can apply 𝑛𝑝 = 𝑛𝑖
2𝑒(𝐹𝑛−𝐹𝑝)/𝑘𝑇. 

In equilibrium, no quasi-Fermi level splitting, so 𝐹𝑛 = 𝐹𝑝 = 𝐸𝐹. Thus, 𝑛𝑝 = 𝑛𝑖
2 = 1020 cm−6. 

With forward bias of 0.28 V, 𝐹𝑛 − 𝐹𝑝 = 𝑞𝑉𝐴 = 0.28 eV. Thus, 𝑛𝑝 = 𝑛𝑖
2𝑒(

0.28

0.0259
) = 5 ∙ 1024 cm−6. 
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                      ECE 305 Exam 2 Formula Sheet (Fall 2017) 

You may remove this page from the exam packet, and take it with you. 

Physical Constants Silicon parameters (𝑻 = 𝟑𝟎𝟎 K) 

ℏ = 1.055 × 10−34 J∙s 𝑁𝐶 = 3.23 × 1019 cm−3 
𝑚0 = 9.109 × 10−31 kg 𝑁𝑉 = 1.83 × 1019 cm−3 

𝑘𝐵 = 𝑘 = 1.38 × 10−23 J/K 𝑛𝑖 = 1.1 × 1010 cm−3 
𝑞 = 1.602 × 10−19 C 𝐾𝑠 = 11.8 

𝜖0 = 8.854 × 10−12 F/m  
 

Miller Indices: (hkl) {hkl} [hkl] <hkl>  Density of states 𝑔𝐶(𝐸) =
(𝑚𝑛

∗ )3/2√2(𝐸−𝐸𝐶)

𝜋2ℏ3
  

Fermi function  𝑓(𝐸) =
1

1+𝑒(𝐸−𝐸𝐹)/𝑘𝑇  Intrinsic carrier concentration 𝑛𝑖 = √𝑁𝐶𝑁𝑉𝑒−𝐸𝑔/2𝑘𝑇 

Equilibrium carrier densities: 𝑁𝐶 =
1

4
(

2𝑚𝑛
∗ 𝑘𝑇

𝜋ℏ2 )
3/2

  𝑁𝑉 =
1

4
(

2𝑚𝑝
∗ 𝑘𝑇

𝜋ℏ2 )
3/2

 

𝑛 = 𝑁𝐶𝑒
(𝐸𝐹−𝐸𝐶)

𝑘𝑇 = 𝑛𝑖𝑒
(𝐸𝐹−𝐸𝑖)

𝑘𝑇                      𝑝 = 𝑁𝑉𝑒
(𝐸𝑉−𝐸𝐹)

𝑘𝑇 = 𝑛𝑖𝑒
(𝐸𝑖−𝐸𝐹)

𝑘𝑇  

Space charge neutrality: 𝑝 − 𝑛 + 𝑁𝐷
+ − 𝑁𝐴

− = 0  Law of Mass Action: 𝑛0𝑝0 = 𝑛𝑖
2 

Non-equilibrium carriers: 𝑛 = 𝑁𝐶𝑒(𝐹𝑁−𝐸𝐶)/𝑘𝑇 𝑝 = 𝑁𝑉𝑒(𝐸𝑉−𝐹𝑃)/𝑘𝑇 𝑛𝑝 = 𝑛𝑖
2𝑒(𝐹𝑁−𝐹𝑃)/𝑘𝑇 

Conductivity/resistivity: 𝜎 = 𝜎𝑛 + 𝜎𝑛 = 𝑞(𝑛𝜇𝑛 + 𝑝𝜇𝑝) = 1/𝜌 

Drift-diffusion current equations: 𝐽𝑛 = 𝑛𝑞𝜇𝑛ℇ𝑥 + 𝑞𝐷𝑛
𝑑𝑛

𝑑𝑥
= 𝑛𝜇𝑛

𝑑𝐹𝑛

𝑑𝑥
  

𝐷𝑛

𝜇𝑛
=

𝑘𝑇

𝑞
 

        𝐽𝑝 = 𝑝𝑞𝜇𝑝ℇ𝑥 − 𝑞𝐷𝑝
𝑑𝑝

𝑑𝑥
= 𝑝𝜇𝑝

𝑑𝐹𝑝

𝑑𝑥
  

𝐷𝑝

𝜇𝑝
=

𝑘𝑇

𝑞
 

Carrier conservation equations:    
𝜕𝑛

𝜕𝑡
= +∇ ∙ (

𝐽𝑛

𝑞
) + 𝐺𝑛 − 𝑅𝑛 

     
𝜕𝑝

𝜕𝑡
= −∇ ∙ (

𝐽𝑝

𝑞
) + 𝐺𝑝 − 𝑅𝑝 

Poisson’s equation:    ∇ ∙ (𝜖ℇ) = 𝜌 

SRH carrier recombination:  𝑅 = ∆𝑛/𝜏𝑛 or 𝑅 = ∆𝑝/𝜏𝑝 

Minority carrier diffusion equation: 
𝜕∆𝑛

𝜕𝑡
= 𝐷𝑛

𝜕2∆𝑛

𝜕𝑥2
−

∆𝑛

𝜏𝑛
+ 𝐺𝐿  𝐿𝐷,𝑛 = √𝐷𝑛𝜏𝑛 

PN homojunction electrostatics:  𝑉𝑏𝑖 =
𝑘𝑇

𝑞
ln (

𝑁𝐷𝑁𝐴

𝑛𝑖
2 )  

𝑑ℇ

𝑑𝑥
=

𝜌(𝑥)

𝐾𝑠𝜖𝑜
  

𝑊 = √
2𝐾𝑠𝜖𝑜𝑉𝑏𝑖

𝑞
(

𝑁𝐴+𝑁𝐷

𝑁𝐴𝑁𝐷
)       𝑥𝑛 = (

𝑁𝐴

𝑁𝐴+𝑁𝐷
) 𝑊        𝑥𝑝 = (

𝑁𝐷

𝑁𝐴+𝑁𝐷
) 𝑊         ℇ(0) = √

2𝑞𝑉𝑏𝑖

𝐾𝑠𝜖𝑜
(

𝑁𝐴𝑁𝐷

𝑁𝐴+𝑁𝐷
) 


