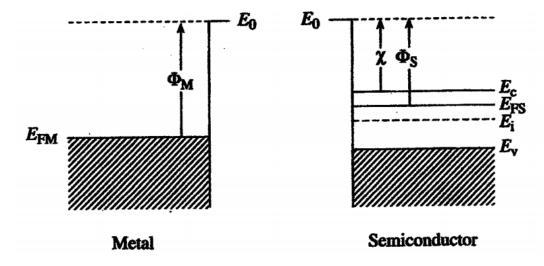

NAME:	PUID:
ECE 305 -	- Fall 2016
Exam 3 – Wednesd	lay, October 26, 2016
This is a closed book exam. You may use a calthis exam. Following the ECE policy, the calcuscientific calculator.	culator and the formula sheet at the end of alator must be a Texas Instruments TI-30X IIS
To receive full credit, you must show your w The exam is designed to be taken in 50 minut Purdue student ID at the top of the page. DO I stop working immediately when time is calle you may remove, if you want.	tes (or less). Be sure to fill in your name and
100 points possible, I) 40 points (8 points per question) II) 30 points III) 30 points	
	e policy
	e course & be reported to the Dean of Students.
I repeat:	
Signature:	

Part I: Answer the 5 multiple choice questions below by entering them on your IDP-15 Scantron.

- 1 (8 points). Which of the following is/are basic requirement(s) for a laser to operate?
 - a. Gain medium
 - b. Resonant cavity
 - c. Low-bandgap semiconductor
 - d. a and b
 - e. All of the above
- 2 (8 points). The depletion and potential drop in the metal side of the Schottky diode is?
 - a. Very small, negligible
 - b. Small, but not negligible
 - c. Large
 - d. Must know doping of metal
 - e. Under steady-state conditions

3 (8 points). In the following diagram, what non-ideality accounts for the current roll-over at large reverse biases ($V_A < -38$ V)?

- a. Recombination in the space-charge region
- b. Avalanche diode effect
- c. Generation in the depletion region
- d. Diffusion current
- e. Series resistance

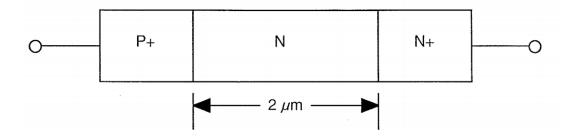

- 4 (8 points). For a metal-semiconductor diode, which of the following is true?
 - a. The saturation current density is much larger than a PN junction with the same bandgap semiconductor
 - b. The n=2 current is absent
 - c. The diode turn-on voltage is reduced, compared to a PN junction made from the same semiconductor
 - d. All of the above
 - e. None of the above

5 (8 points). A small incremental (positive) voltage is applied to a diode. What is the source of the charge on the plates of the depletion capacitor?

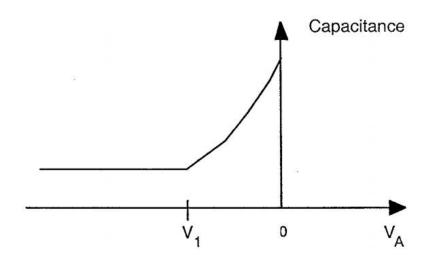
- a. Majority carriers at the edges of the depletion region
- b. Minority carriers at the edges of the depletion region
- c. Majority carriers at the metallurgical junction
- d. Minority carriers at the metallurgical junction
- e. Ionized dopants at the contacts

Part II (Free Response, 30 points)

Consider the energy band diagrams of a metal and a semiconductor shown below. The semiconductor has a relative dielectric constant of 12, an electron affinity $\chi=3.25$ eV, $\Phi_s=3.5$ eV, and a bandgap $E_g=1.0$ eV. The metal has a workfunction $\Phi_M=4.0$ eV. Answer the following questions.


a. (10 pts) Draw the equilibrium band diagram for an ideal metal-semiconductor (MS) structure formed from the pictured components with the indicated parameter values.

Continued on next page....


b.	(4 pts) Is this ideal MS structure rectifying or Ohmic? Justify your answer.
c.	(8 pts) What is the MS barrier height Φ_B ? Label the diagram accordingly.
d.	(8 pts) What is the built-in voltage V_{bi} of this MS structure?

Part III (Free Response, 30 points)

Consider the p+/n/n+ diode illustrated below. Assume that the n region doping $N_D=3\cdot 10^{15}$ cm⁻³, while doping values in the p+ and n+ regions are so large that their depletion widths are negligible.

Also assume that $V_{bi}=1.1$ V, K_s =12, $J_o=0.14$ nA/cm², $\tau=1~\mu s$, and that the capacitance as a function of voltage is measured as below:

a. (10 pts) Calculate the minimum capacitance per unit area.

Continued on next page....

b.	(10 pts) What is the diode complex admittance per unit area as a function of frequency ω [in MHz] when $V_A=0$? Justify your answer.
C.	(10 pts) At what value of applied voltage V_A does the capacitance flatten out (i.e., at which voltage V_1 does the capacitance drop to 1.01 times its minimum value, as you go from right to left on the voltage axis)?

ECE 305 Exam 3 Formula Sheet (Fall 2016)

You may remove these pages from the exam packet, and take them with you.

Physical Constants	Silicon parameters ($T=300$ K)
$h/2\pi = \hbar = 1.055 \times 10^{-34} \text{ J} \cdot \text{s}$	$N_C = 3.23 \times 10^{19} \text{cm}^{-3}$
$m_0 = 9.109 \times 10^{-31} \text{ kg}$	$N_V = 1.83 \times 10^{19} \text{cm}^{-3}$
$k_B = 1.38 \times 10^{-23} \text{ J/K}$	$n_i = 1.1 \times 10^{10} \text{ cm}^{-3}$
$q = 1.602 \times 10^{-19} \mathrm{C}$	$K_{\rm s} = 11.8$
$\epsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$	$E_g = 1.12 \text{ eV}; \;\; \chi = 4.03 \text{ eV}$

Miller Indices: (hkl) {hkl} [hkl] <hkl>

Density of states
$$g_C(E) = \frac{(m_n^*)^{3/2} \sqrt{2(E-E_C)}}{\pi^2 \hbar^3}$$

Fermi function $f(E) = \frac{1}{1 + \rho(E - E_F)/kT}$

Intrinsic carrier concentration $n_i = \sqrt{N_C N_V} e^{-E_g/2kT}$

Equilibrium carrier densities: $N_C = \frac{1}{4} \left(\frac{2m_n^* kT}{\pi \hbar^2} \right)^{3/2}$ $N_V = \frac{1}{4} \left(\frac{2m_p^* kT}{\pi \hbar^2} \right)^{3/2}$

$$N_V = \frac{1}{4} \left(\frac{2m_p^* kT}{\pi \hbar^2} \right)^{3/2}$$

$$n_0 = N_C e^{(E_F - E_C)/kT} = n_i e^{(E_F - E_i)/kT}$$

$$p_0 = N_V e^{(E_V - E_F)/kT} = n_i e^{(E_F - E_i)/kT}$$

Space charge neutrality: $p-n+N_D^+-N_A^-=0$

Law of Mass Action: $n_0 p_0 = n_i^2$

Non-equilibrium carriers: $n = N_C e^{(F_N - E_C)/kT}$ $p = N_V e^{(E_V - F_P)/kT}$ $np = n_i^2 e^{(F_N - F_P)/kT}$

$$n = N_C e^{(F_N - E_C)/kT}$$

$$p = N_V e^{(E_V - F_P)/k}$$

$$np = n_i^2 e^{(F_N - F_P)/kT}$$

Conductivity/resistivity: $\sigma = \sigma_n + \sigma_n = q(n\mu_n + p\mu_n) = 1/\rho$

Drift-diffusion current equations:
$$J_n = nq\mu_n \mathcal{E}_x + qD_n \frac{dn}{dx} = n\mu_n \frac{dF_n}{dx}$$

$$\frac{D_n}{u} = \frac{kT}{a}$$

$$J_p = pq\mu_p \mathcal{E}_x - qD_p \frac{dp}{dx} = p\mu_p \frac{dF_p}{dx}$$

$$\frac{D_p}{\mu_p} = \frac{kT}{q}$$

Carrier conservation equations:

$$\frac{\partial n}{\partial t} = +\nabla \cdot \left(\frac{J_n}{a}\right) + G_n - R_n$$

$$\frac{\partial p}{\partial t} = -\nabla \cdot \left(\frac{J_p}{q}\right) + G_p - R_p$$

Poisson's equation:

$$\nabla \cdot (\epsilon \mathcal{E}) = \rho$$

SRH carrier recombination:

$$R = \Delta n/\tau_n$$
 or $R = \Delta p/\tau_p$

$$R = \Delta p / \tau_p$$

Minority carrier diffusion equation: $\frac{\partial \Delta n}{\partial t} = D_n \frac{\partial^2 \Delta n}{\partial x^2} - \frac{\Delta n}{\tau_n} + G_L$ $L_{D,n} = \sqrt{D_n \tau_n}$

$$\frac{\partial \Delta n}{\partial t} = D_n \frac{\partial^2 \Delta n}{\partial x^2} - \frac{\Delta n}{\tau_n} + G_n$$

$$L_{D,n} = \sqrt{D_n \tau_n}$$

PN homojunction electrostatics:

$$V_{bi} = \frac{kT}{a} \ln \left(\frac{N_D N_A}{n_c^2} \right) \qquad \frac{d\mathcal{E}}{dx} = \frac{\rho(x)}{K_c \epsilon_0}$$

$$\frac{d\mathcal{E}}{dx} = \frac{\rho(x)}{K_0 \epsilon_0}$$

$$W = \sqrt{\frac{2K_S\epsilon_o V_{bi}}{a} \left(\frac{N_A + N_D}{N_A N_D}\right)}$$

$$x_n = \left(\frac{N_A}{N_A + N_B}\right) W$$

$$x_p = \left(\frac{N_D}{N_A + N_B}\right) W$$

$$W = \sqrt{\frac{2K_S \epsilon_o V_{bi}}{q} \left(\frac{N_A + N_D}{N_A N_D}\right)} \qquad x_n = \left(\frac{N_A}{N_A + N_D}\right) W \qquad x_p = \left(\frac{N_D}{N_A + N_D}\right) W \qquad \mathcal{E}(0) = \sqrt{\frac{2qV_{bi}}{K_S \epsilon_o} \left(\frac{N_A N_D}{N_A + N_D}\right)}$$

PN diode current:
$$\Delta n(0) = \frac{n_i^2}{N_A} \left(e^{qV_A/kT} - 1 \right)$$
 $\Delta p(0) = \frac{n_i^2}{N_D} \left(e^{qV_A/kT} - 1 \right)$

$$J_{D} = J_{o} \left(e^{qV_{A}/kT} - 1 \right) \qquad J_{o} = q \left(\frac{D_{n}}{L_{n}} \frac{n_{i}^{2}}{N_{A}} + \frac{D_{p}}{L_{p}} \frac{n_{i}^{2}}{N_{D}} \right) \; (long) \qquad J_{o} = q \left(\frac{D_{n}}{W_{p}} \frac{n_{i}^{2}}{N_{A}} + \frac{D_{p}}{W_{n}} \frac{n_{i}^{2}}{N_{D}} \right) \; (short)$$

Non-ideal diodes:
$$I = I_o \left(e^{q(V_A - IR_S)/kT} - 1 \right)$$
 $J_{gen} = -q \frac{n_i}{2\tau_o} W$

Photovoltaics:
$$V_{oc} = \frac{nkT}{q} \ln \left(\frac{J_{sc}}{I_o} \right)$$
 $J_{PV} = J_o \left(e^{qV_A/kT} - 1 \right) - J_{sc}$

Small signal model:
$$G_d = \frac{I_D + I_o}{kT/q}$$
 $C_J(V_A) = \frac{K_S \epsilon_o A}{\sqrt{\frac{2K_S \epsilon_o (V_{bi} - V_A)}{qN_A}}} = A \sqrt{\frac{qK_S \epsilon_o N_A}{2(V_{bi} - V_A)}}$ $C_D = G_d \tau_n$

MS diode properties:
$$qV_{bi}=|\Phi_M-\Phi_S|$$
 $\Phi_{BP}=\chi+E_G-\Phi_M$ $\Phi_{BN}=\Phi_M-\chi$

$$J_D = J_o \left(e^{qV_A/kT} - 1 \right) \qquad J_o = A^* T^2 e^{-\Phi_B/kT} \qquad A^* = \frac{4\pi q m^* k_B^2}{h^3} = 120 \frac{m^*}{m_o} \frac{A}{\text{cm}^2 \cdot \text{K}^2}$$