\qquad

ECE 305 - Fall 2015

Exam 4 - Monday, November 23, 2015
This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the ECE policy, the calculator must be a Texas Instruments TI---30X IIS scientific calculator.

To receive full credit, you must show your work (scratch paper is attached).
The exam is designed to be taken in 50 minutes (or less). Be sure to fill in your name and Purdue student ID at the top of the page. DO NOT open the exam until told to do so, and stop working immediately when time is called. The last 2 pages are equation sheets, which you may remove, if you want.

100 points possible,
I) 40 points (8 points per question)
II) 30 points
III) 30 points

Course policy

If I am caught cheating, I will earn an F in the course \& be reported to the Dean of Students.
I repeat: \qquad
\qquad
Signature: \qquad

Part I: Answer the 5 multiple choice questions below by entering them on your IDP-15 Scantron.

1 (8 points). An MOS capacitor can be modeled as follows:
a. Two bias-dependent capacitors in series
b. One constant and one bias-dependent capacitor in parallel
c. One constant and one bias-dependent capacitor in series
d. Two constant capacitors in series
e. One constant and two bias-dependent capacitors in parallel

2 (8 points). For a long-channel MOSFET biased above the turn-on voltage V_{T}, how does the saturated drain current I_{D} scale with the gate voltage $V_{G S}$?
a. $\quad 1 /\left(V_{G S}-V_{T}\right)^{2}$
b. $\sqrt{V_{G S}-V_{T}}$
c. $\quad V_{G S}-V_{T}$
d. $\left(V_{G S}-V_{T}\right)^{2}$
e. $\left(V_{G S}-V_{T}\right)^{3}$

3 (8 points). What is the effect of sodium ion transport into a gate oxide on a MOS capacitor?
a. Etch the oxide away
b. Shift the threshold voltage in a time-varying fashion
c. Convert the oxide into a good conductor
d. Change the semiconductor doping from p to n-type
e. Reduce the series resistance to zero

4 (8 points). Consider the current-voltage relationship depicted in the following diagram:

If $K_{o x}=4$, and $K_{S i}=12$, and $t_{o x}=6 \mathrm{~nm}$, what is a reasonable estimate of W in the high-frequency regime for $V_{G}^{\prime} \gg V_{T}^{\prime}$?
a. 1 nm
b. 6 nm
c. 18 nm
d. 54 nm
e. 288 nm

5 (8 points). When minority carriers pile up at the oxide-Si interface of a MOS device, what is the bias condition?
a. Inversion
b. Flatband
c. Depletion
d. Deep depletion
e. Accumulation

Part II (Free Response, 30 points)

Consider the transfer and output characteristics observed for an InGaAs MOSFET below. Assume the power supply voltage $V_{D D}=1 \mathrm{~V}$ and $C_{o x}=200 \mathrm{nF} / \mathrm{cm}^{2}$. Please answer the following questions.

a. What is the on current for this MOSFET? Explain how you find it.
b. What is the off current for this MOSFET? Explain how you find it.
c. What is the average subthreshold swing at $\underline{\mathrm{V}}_{\mathrm{ds}}=50 \mathrm{mV}$? Explain how you find it.
d. What is the threshold voltage? Explain how you find it. Please note that the transfer characteristics are plotted on a log scale.
e. What is the inversion layer charge density in the on state (in $\mathrm{nC} / \mathrm{cm}^{2}$)?

Part III (Free Response, 30 points)

1. Assume a p^{+}polysilicon gate with an n -type silicon substrate, with $\mathrm{K}_{\mathrm{s}}=11.8$ and $N_{D}=10^{14} / \mathrm{cm}^{3}$. The oxide thickness can be taken as 100 nm and dielectric constant $\mathrm{K}_{\mathrm{ox}}=4$.
a. What is ϕ_{F} here?
b. What is the "metal"-semiconductor workfunction difference?
c. What is W, when $\phi_{S}=\phi_{F}$?
d. What is the electric field in the oxide, when $\phi_{S}=\phi_{F}$?
e. What is the potential drop across the oxide?

ECE 305 Exam 4 Formula Sheet (Fall 2015)

You may remove these pages from the exam packet, and take them with you.

Physical Constants	Silicon parameters $(\boldsymbol{T}=\mathbf{3 0 0} \mathbf{K})$
$h / 2 \pi=\hbar=1.055 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$	$N_{C}=3.23 \times 10^{19} \mathrm{~cm}^{-3}$
$m_{0}=9.109 \times 10^{-31} \mathrm{~kg}$	$N_{V}=1.83 \times 10^{19} \mathrm{~cm}^{-3}$
$k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	$n_{i}=1.1 \times 10^{10} \mathrm{~cm}^{-3}$
$q=1.602 \times 10^{-19} \mathrm{C}$	$K_{S}=11.8$
$\epsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$	$E_{g}=1.12 \mathrm{eV} ; \chi=4.03 \mathrm{eV}$

Miller Indices: (hkl) \{hkl\} [hkl] <hkl>
Density of states $g_{C}(E)=\frac{\left(m_{n}^{*}\right)^{3 / 2} \sqrt{2\left(E-E_{C}\right)}}{\pi^{2} \hbar^{3}}$
Fermi function $f(E)=\frac{1}{1+e^{\left(E-E_{F}\right) / k T}} \quad$ Intrinsic carrier concentration $n_{i}=\sqrt{N_{C} N_{V}} e^{-E_{g} / 2 k T}$
Equilibrium carrier densities: $N_{C}=\frac{1}{4}\left(\frac{2 m_{n}^{*} k T}{\pi \hbar^{2}}\right)^{3 / 2} \quad N_{V}=\frac{1}{4}\left(\frac{2 m_{p}^{*} k T}{\pi \hbar^{2}}\right)^{3 / 2}$
$n_{0}=N_{C} e^{\left(E_{F}-E_{C}\right) / k T}=n_{i} e^{\left(E_{F}-E_{i}\right) / k T}$
$p_{0}=N_{V} e^{\left(E_{V}-E_{F}\right) / k T}=n_{i} e^{\left(E_{F}-E_{i}\right) / k T}$
Space charge neutrality: $p-n+N_{D}^{+}-N_{A}^{-}=0$
Law of Mass Action: $n_{0} p_{0}=n_{i}^{2}$
Non-equilibrium carriers: $\quad n=N_{C} e^{\left(F_{N}-E_{C}\right) / k T} \quad p=N_{V} e^{\left(E_{V}-F_{P}\right) / k T} \quad n p=n_{i}^{2} e^{\left(F_{N}-F_{P}\right) / k T}$
Conductivity/resistivity: $\sigma=\sigma_{n}+\sigma_{n}=q\left(n \mu_{n}+p \mu_{p}\right)=1 / \rho$
Drift-diffusion current equations: $J_{n}=n q \mu_{n} \varepsilon_{x}+q D_{n} \frac{d n}{d x}=n \mu_{n} \frac{d F_{n}}{d x} \quad \frac{D_{n}}{\mu_{n}}=\frac{k T}{q}$

$$
J_{p}=p q \mu_{p} \varepsilon_{x}-q D_{p} \frac{d p}{d x}=p \mu_{p} \frac{d F_{p}}{d x} \quad \frac{D_{p}}{\mu_{p}}=\frac{k T}{q}
$$

Carrier conservation equations: $\quad \frac{\partial n}{\partial t}=+\nabla \cdot\left(\frac{J_{n}}{q}\right)+G_{n}-R_{n}$

$$
\frac{\partial p}{\partial t}=-\nabla \cdot\left(\frac{J_{p}}{q}\right)+G_{p}-R_{p}
$$

Poisson's equation:
$\nabla \cdot(\epsilon \varepsilon)=\rho$
SRH carrier recombination: $\quad R=\Delta n / \tau_{n} \quad$ or $\quad R=\Delta p / \tau_{p}$
Minority carrier diffusion equation: $\frac{\partial \Delta n}{\partial t}=D_{n} \frac{\partial^{2} \Delta n}{\partial x^{2}}-\frac{\Delta n}{\tau_{n}}+G_{L}$

$$
L_{D, n}=\sqrt{D_{n} \tau_{n}}
$$

PN homojunction electrostatics: $\quad V_{b i}=\frac{k T}{q} \ln \left(\frac{N_{D} N_{A}}{n_{i}^{2}}\right) \quad \frac{d \varepsilon}{d x}=\frac{\rho(x)}{K_{s} \epsilon_{o}}$
$W=\sqrt{\frac{2 K_{s} \epsilon_{o} V_{b i}}{q}\left(\frac{N_{A}+N_{D}}{N_{A} N_{D}}\right)} \quad x_{n}=\left(\frac{N_{A}}{N_{A}+N_{D}}\right) W \quad x_{p}=\left(\frac{N_{D}}{N_{A}+N_{D}}\right) W \quad \varepsilon(0)=\sqrt{\frac{2 q V_{b i}}{K_{s} \epsilon_{o}}\left(\frac{N_{A} N_{D}}{N_{A}+N_{D}}\right)}$

PN diode current: $\quad \Delta n(0)=\frac{n_{i}^{2}}{N_{A}}\left(e^{q V_{A} / k T}-1\right) \quad \Delta p(0)=\frac{n_{i}^{2}}{N_{D}}\left(e^{q V_{A} / k T}-1\right)$
$J_{D}=J_{o}\left(e^{q V_{A} / k T}-1\right) \quad J_{o}=q\left(\frac{D_{n}}{L_{n}} \frac{n_{i}^{2}}{N_{A}}+\frac{D_{p}}{L_{p}} \frac{n_{i}^{2}}{N_{D}}\right)$ (long) $\quad J_{o}=q\left(\frac{D_{n}}{W_{p}} \frac{n_{i}^{2}}{N_{A}}+\frac{D_{p}}{W_{n}} \frac{n_{i}^{2}}{N_{D}}\right)$ (short)
Non-ideal diodes: $\quad I=I_{o}\left(e^{q\left(V_{A}-I R_{S}\right) / k T}-1\right) \quad J_{g e n}=-q \frac{n_{i}}{2 \tau_{o}} W$
Photovoltaics: $\quad V_{o c}=\frac{n k T}{q} \ln \left(\frac{J_{s c}}{J_{o}}\right) \quad J_{P V}=J_{o}\left(e^{q V_{A} / k T}-1\right)-J_{s c}$
Small signal model: $\quad G_{d}=\frac{I_{D}+I_{o}}{k T / q} \quad C_{J}\left(V_{R}\right)=\frac{K_{s} \epsilon_{o} A}{\sqrt{\frac{2 K_{s} \sigma_{0} V_{b i}}{q N_{A}}}}=A \sqrt{\frac{q K_{s} \epsilon_{0} N_{A}}{2 V_{b i}}} \quad C_{D}=G_{d} \tau_{n}$

MS diode properties: $q V_{b i}=\left|\Phi_{M}-\Phi_{S}\right| \quad \Phi_{B P}=\chi+E_{G}-\Phi_{M} \quad \Phi_{B N}=\Phi_{M}-\chi$ $J_{D}=J_{o}\left(e^{q V_{A} / k T}-1\right) \quad J_{o}=A^{*} T^{2} e^{-\Phi_{B} / k T} \quad A^{*}=\frac{4 \pi q m^{*} k_{B}^{2}}{h^{3}}=120 \frac{m^{*}}{m_{o}} \frac{\mathrm{~A}}{\mathrm{~cm}^{2} \cdot \mathrm{~K}^{2}}$

MOS capacitors: $\quad W=\sqrt{\frac{2 K_{s} \epsilon_{o} \phi_{s}}{q N_{A}}} \mathrm{~cm} \quad \varepsilon_{s}=\sqrt{\frac{2 q N_{A} \phi_{s}}{K_{s} \epsilon_{o}}} \frac{\mathrm{~V}}{\mathrm{~cm}}$

$$
Q_{B}=-q N_{A} W\left(\phi_{s}\right)=-\sqrt{2 q K_{s} \epsilon_{o} N_{A} \phi_{s}} \frac{\mathrm{C}}{\mathrm{~cm}^{2}}
$$

$$
V_{G}=V_{F B}+\phi_{s}+\Delta \phi_{o x}=V_{F B}+\phi_{s}-\frac{Q_{s}\left(\phi_{s}\right)}{C_{o x}}
$$

$$
C_{o x}=K_{o} \epsilon_{o} / x_{o} \quad V_{F B}=\Phi_{m s} / q-Q_{F} / C_{o x}
$$

$C=C_{o x} /\left[1+\frac{K_{o} W\left(\phi_{s}\right)}{K_{s} x_{o}}\right] \quad V_{T}=-Q_{B}\left(2 \phi_{F}\right) / C_{o x}+2 \phi_{F} \quad Q_{n}=-C_{o x}\left(V_{G}-V_{T}\right)$
MOSFETs:

$$
I_{D}=-W Q_{n}(y=0)\left\langle v_{y}(y=0)\right\rangle
$$

$$
I_{D}=\frac{W}{L} \mu_{n} C_{o x}\left(V_{G S}-V_{T}\right) V_{D S} \quad I_{D}=W C_{o x} v_{s a t}\left(V_{G S}-V_{T}\right)
$$

Square Law (for $V_{G S} \geq V_{T}$): $\quad I_{D}=\left\{\begin{array}{lr}\frac{W}{L} \mu_{n} C_{o x}\left[\left(V_{G S}-V_{T}\right) V_{D S}-V_{D S}^{2} / 2\right], & 0 \leq V_{D S} \leq V_{G S}-V_{T} \\ \frac{W}{2 L} \mu_{n} C_{o x}\left(V_{G S}-V_{T}\right)^{2}, & V_{D S} \geq V_{G S}-V_{T}\end{array}\right.$

