## ECE 305 - Fall 2016

## Final Exam (Exam 5) - Monday, December 12, 2016

This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the ECE policy, the calculator must be a Texas Instruments TI-30X IIS scientific calculator.

To receive full credit, you must show your work (scratch paper is attached).
The exam is designed to be taken in 50 minutes (or less). However, the full two hours will be allowed, if you need them. Be sure to fill in your name and Purdue student ID at the top of the page. DO NOT open the exam until told to do so, and stop working immediately when time is called. The last 2 pages are equation sheets, which you may remove, if you want.

100 points possible,
I) 40 points ( 8 points per question)
II) 30 points
III) 30 points

## Course policy

If I am caught cheating, I will earn an F in the course \& be reported to the Dean of Students.
I repeat: $\qquad$
$\qquad$
Signature: $\qquad$

Part I: Answer the 5 multiple choice questions below by entering them on your IDP-15 Scantron.
1 (8 points). Which of the following would reduce the emitter current crowding in a BJT?
a. Decreasing the base doping
b. Decreasing the emitter doping
c. Increasing the emitter doping
d. Increasing the base doping
e. Increasing the collector doping

2 (8 points). If a BJT is hooked up in the inverted active mode, which of the following is true, compared to the forward active mode?
a. The emitter injection efficiency is lower
b. The emitter injection efficiency is higher
c. The base transport factor is lower
d. The base transport factor is higher
e. The base transit time is longer

3 (8 points). Based on the diagram of a BJT below, which of the label numbers below corresponds to the cutoff regime?

a. 1
b. 2
c. 4
d. 5
e. 6

4 (8 points). What is the classical Shockley ordering of doping (from high to low)?
a. Base, collector, emitter
b. Base, emitter, collector
c. Collector, emitter, base
d. Emitter, collector, base
e. Emitter, base, collector

5 (8 points). Which of the following factors can improve $\beta_{\mathrm{dc}}$ in a BJT?
a. High electron affinity material in the base region
b. Relatively high bandgap material in the base region
c. Relatively high bandgap materials in the emitter and collector regions
d. Low breakdown voltage material in the collector region
e. Relatively high doping in the collector region

## Part II (Free Response, 30 points)

Consider an npn BJT made of silicon, depicted below. Assume that $I_{E p}=10 \mu \mathrm{~A}, I_{E n}=2 \mathrm{~mA}, I_{C p}=100$ nA , and $I_{C n}=1.98 \mathrm{~mA}$. Assume that recombination within the BJT is small (i.e., diffusion lengths are much larger than the thicknesses of each layer).
a. What is the base transport factor $\alpha_{T}$ ?
b. What is the emitter injection efficiency $\gamma_{F}$ ?
c. What are the total emitter, collector, and base currents $I_{E}, I_{C}$, and $I_{B}$ ?
d. What is the base current gain $\alpha_{d c}$ and emitter current gain $\beta_{d c}$ ?
e. What are the resulting currents $I_{C B 0}$ if one leaves the emitter lead open, and $I_{C E 0}$ if one leaves the base lead open?

## Part III (Free Response, 30 points)

Consider an ideal silicon pnp BJT that is biased to the forward active mode at room temperature. The amplification factor $\beta_{D C}=100$. Assume that $D_{E}=D_{B}, I_{C p}=I_{E p}, L_{E}=40 \mathrm{~W}, L_{B}=10 \mathrm{~W}$, and $L_{C}=$ $200 W$, where $W$ is the width of the quasi-neutral region in the base. Please answer the following questions:
a. What is the value of the emitter to base doping ratio $N_{E} / N_{B}$ ?
b. Assume that $I_{F 0}=10 \mathrm{nA}, I_{R 0}=9 \mathrm{nA}$, and the system is at room temperature. Write down the Ebers-Moll equations for the collector and emitter current of this system as a function of $V_{B E}$ and $V_{B C}$. All other values in these equations should be provided numerically.
c. If the base region silicon were substituted with a hypothetical material with a smaller bandgap of 0.8 eV but otherwise identical properties, calculate the new value of the amplification factor $\beta_{D C}$.

## ECE 305 Exam 5 Formula Sheet (Fall 2016)

You may remove these pages from the exam packet, and take them with you.

| Physical Constants | Silicon parameters $(\mathbf{T}=\mathbf{3 0 0} \mathbf{K})$ |
| :---: | :---: |
| $h / 2 \pi=\hbar=1.055 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ | $N_{C}=3.23 \times 10^{19} \mathrm{~cm}^{-3}$ |
| $m_{0}=9.109 \times 10^{-31} \mathrm{~kg}$ | $N_{V}=1.83 \times 10^{19} \mathrm{~cm}^{-3}$ |
| $k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ | $n_{i}=1.1 \times 10^{10} \mathrm{~cm}^{-3}$ |
| $q=1.602 \times 10^{-19} \mathrm{C}$ | $K_{s}=11.8$ |
| $\epsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ | $E_{g}=1.12 \mathrm{eV} ; \chi=4.03 \mathrm{eV}$ |

Miller Indices: (hkl) \{hkl\} [hkl] <hkl>
Density of states $g_{C}(E)=\frac{\left(m_{n}^{*}\right)^{3 / 2} \sqrt{2\left(E-E_{C}\right)}}{\pi^{2} \hbar^{3}}$
Fermi function $f(E)=\frac{1}{1+e^{\left(E-E_{F}\right) / k T}} \quad$ Intrinsic carrier concentration $n_{i}=\sqrt{N_{C} N_{V}} e^{-E_{g} / 2 k T}$
Equilibrium carrier densities: $N_{C}=\frac{1}{4}\left(\frac{2 m_{n}^{*} k T}{\pi \hbar^{2}}\right)^{3 / 2} \quad N_{V}=\frac{1}{4}\left(\frac{2 m_{p}^{*} k T}{\pi \hbar^{2}}\right)^{3 / 2}$
$n_{0}=N_{C} e^{\left(E_{F}-E_{C}\right) / k T}=n_{i} e^{\left(E_{F}-E_{i}\right) / k T}$
$p_{0}=N_{V} e^{\left(E_{V}-E_{F}\right) / k T}=n_{i} e^{\left(E_{F}-E_{i}\right) / k T}$
Space charge neutrality: $p-n+N_{D}^{+}-N_{A}^{-}=0$
Law of Mass Action: $n_{0} p_{0}=n_{i}^{2}$
Non-equilibrium carriers: $\quad n=N_{C} e^{\left(F_{N}-E_{C}\right) / k T} \quad p=N_{V} e^{\left(E_{V}-F_{P}\right) / k T} \quad n p=n_{i}^{2} e^{\left(F_{N}-F_{P}\right) / k T}$
Conductivity/resistivity: $\sigma=\sigma_{n}+\sigma_{n}=q\left(n \mu_{n}+p \mu_{p}\right)=1 / \rho$
Drift-diffusion current equations: $\quad J_{n}=n q \mu_{n} \varepsilon_{x}+q D_{n} \frac{d n}{d x}=n \mu_{n} \frac{d F_{n}}{d x} \quad \frac{D_{n}}{\mu_{n}}=\frac{k T}{q}$

$$
J_{p}=p q \mu_{p} \varepsilon_{x}-q D_{p} \frac{d p}{d x}=p \mu_{p} \frac{d F_{p}}{d x} \quad \frac{D_{p}}{\mu_{p}}=\frac{k T}{q}
$$

Carrier conservation equations: $\quad \frac{\partial n}{\partial t}=+\nabla \cdot\left(\frac{J_{n}}{q}\right)+G_{n}-R_{n}$

$$
\frac{\partial p}{\partial t}=-\nabla \cdot\left(\frac{J_{p}}{q}\right)+G_{p}-R_{p}
$$

Poisson's equation:
$\nabla \cdot(\epsilon \varepsilon)=\rho$
SRH carrier recombination: $\quad R=\Delta n / \tau_{n} \quad$ or $\quad R=\Delta p / \tau_{p}$
Minority carrier diffusion equation: $\frac{\partial \Delta n}{\partial t}=D_{n} \frac{\partial^{2} \Delta n}{\partial x^{2}}-\frac{\Delta n}{\tau_{n}}+G_{L} \quad L_{D, n}=\sqrt{D_{n} \tau_{n}}$
PN homojunction electrostatics: $\quad V_{b i}=\frac{k T}{q} \ln \left(\frac{N_{D} N_{A}}{n_{i}^{2}}\right) \quad \frac{d \varepsilon}{d x}=\frac{\rho(x)}{K_{s} \epsilon_{o}}$
$W=\sqrt{\frac{2 K_{S} \epsilon_{0} V_{b i}}{q}\left(\frac{N_{A}+N_{D}}{N_{A} N_{D}}\right)} \quad x_{n}=\left(\frac{N_{A}}{N_{A}+N_{D}}\right) W \quad x_{p}=\left(\frac{N_{D}}{N_{A}+N_{D}}\right) W \quad \varepsilon(0)=\sqrt{\frac{2 q V_{b i}}{K_{s} \epsilon_{o}}\left(\frac{N_{A} N_{D}}{N_{A}+N_{D}}\right)}$

PN diode current: $\quad \Delta n(0)=\frac{n_{i}^{2}}{N_{A}}\left(e^{q V_{A} / k T}-1\right) \quad \Delta p(0)=\frac{n_{i}^{2}}{N_{D}}\left(e^{q V_{A} / k T}-1\right)$
$J_{D}=J_{o}\left(e^{q V_{A} / k T}-1\right) \quad J_{o}=q\left(\frac{D_{n}}{L_{n}} \frac{n_{i}^{2}}{N_{A}}+\frac{D_{p}}{L_{p}} \frac{n_{i}^{2}}{N_{D}}\right)$ (long) $\quad J_{o}=q\left(\frac{D_{n}}{W_{p}} \frac{n_{i}^{2}}{N_{A}}+\frac{D_{p}}{W_{n}} \frac{n_{i}^{2}}{N_{D}}\right)$ (short)
Non-ideal diodes: $\quad I=I_{o}\left(e^{q\left(V_{A}-I R_{S}\right) / k T}-1\right) \quad J_{g e n}=-q \frac{n_{i}}{2 \tau_{o}} W$
Photovoltaics: $\quad V_{o c}=\frac{n k T}{q} \ln \left(\frac{J_{s c}}{J_{o}}\right) \quad J_{P V}=J_{o}\left(e^{q V_{A} / k T}-1\right)-J_{s c}$
Small signal model: $\quad G_{d}=\frac{I_{D}+I_{o}}{k T / q} \quad C_{J}\left(V_{R}\right)=\frac{K_{s} \epsilon_{o} A}{\sqrt{\frac{2 K_{s} \sigma_{0} V_{b i}}{q N_{A}}}}=A \sqrt{\frac{q K_{s} \epsilon_{0} N_{A}}{2 V_{b i}}} \quad C_{D}=G_{d} \tau_{n}$

MS diode properties: $q V_{b i}=\left|\Phi_{M}-\Phi_{S}\right| \quad \Phi_{B P}=\chi+E_{G}-\Phi_{M} \quad \Phi_{B N}=\Phi_{M}-\chi$ $J_{D}=J_{o}\left(e^{q V_{A} / k T}-1\right) \quad J_{o}=A^{*} T^{2} e^{-\Phi_{B} / k T} \quad A^{*}=\frac{4 \pi q m^{*} k_{B}^{2}}{h^{3}}=120 \frac{m^{*}}{m_{o}} \frac{\mathrm{~A}}{\mathrm{~cm}^{2} \cdot \mathrm{~K}^{2}}$

MOS capacitors: $\quad W=\sqrt{\frac{2 K_{s} \epsilon_{o} \phi_{s}}{q N_{A}}} \mathrm{~cm} \quad \varepsilon_{s}=\sqrt{\frac{2 q N_{A} \phi_{s}}{K_{s} \epsilon_{o}}} \frac{\mathrm{~V}}{\mathrm{~cm}}$

$$
\begin{gathered}
Q_{B}=-q N_{A} W\left(\phi_{s}\right)=-\sqrt{2 q K_{s} \epsilon_{o} N_{A} \phi_{s}} \frac{\mathrm{C}}{\mathrm{~cm}^{2}} \\
V_{G}=V_{F B}+\phi_{s}+\Delta \phi_{o x}=V_{F B}+\phi_{s}-\frac{Q_{s}\left(\phi_{s}\right)}{C_{o x}} \\
C_{o x}=K_{o} \epsilon_{o} / x_{o} \quad V_{F B}=\Phi_{m s} / q-Q_{F} / C_{o x}
\end{gathered}
$$

$C=C_{o x} /\left[1+\frac{K_{o} W\left(\phi_{s}\right)}{K_{s} x_{o}}\right]$

$$
V_{T}=-Q_{B}\left(2 \phi_{F}\right) / C_{o x}+2 \phi_{F}
$$

$$
Q_{n}=-C_{o x}\left(V_{G}-V_{T}\right)
$$

MOSFETs:

$$
I_{D}=-W Q_{n}(y=0)\left\langle v_{y}(y=0)\right\rangle
$$

$$
I_{D}=\frac{W}{L} \mu_{n} C_{o x}\left(V_{G S}-V_{T}\right) V_{D S} \quad I_{D}=W C_{o x} v_{s a t}\left(V_{G S}-V_{T}\right)
$$

Square Law (for $V_{G S} \geq V_{T}$ ): $\quad I_{D}=\left\{\begin{array}{lr}\frac{W}{L} \mu_{n} C_{o x}\left[\left(V_{G S}-V_{T}\right) V_{D S}-V_{D S}^{2} / 2\right], & 0 \leq V_{D S} \leq V_{G S}-V_{T} \\ \frac{W}{2 L} \mu_{n} C_{o x}\left(V_{G S}-V_{T}\right)^{2}, & V_{D S} \geq V_{G S}-V_{T}\end{array}\right.$

Bipolar transistors: (assuming npn configuration, and short emitter, base, and collector regions) Ebers-Moll Equations:

$$
\begin{aligned}
& I_{C}\left(V_{B E}, V_{B C}\right)=\alpha_{F} I_{F 0}\left(e^{q V_{B E} / k_{B} T}-1\right)-I_{R 0}\left(e^{q V_{B C} / k_{B} T}-1\right) \\
& I_{E}\left(V_{B E}, V_{B C}\right)=I_{F 0}\left(e^{q V_{E E} / k_{B} T}-1\right)-\alpha_{R} I_{R 0}\left(e^{q V_{B C} / k_{B} T}-1\right) \\
& I_{F 0}=q A\left(\frac{D_{n B}}{W_{B}} \frac{n_{i}^{2}}{N_{A B}}+\frac{D_{p E}}{W_{E}} \frac{n_{i}^{2}}{N_{D E}}\right) \\
& I_{R 0}=q A\left(\frac{D_{n B}}{W_{B}} \frac{n_{i}^{2}}{N_{A B}}+\frac{D_{p C}}{W_{C}} \frac{n_{i}^{2}}{N_{D C}}\right) \\
& \alpha_{F}=\gamma_{F} \alpha_{T} \\
& \alpha_{R}=\gamma_{R} \alpha_{T} \\
& \alpha_{F} I_{F 0}=\alpha_{R} I_{R 0} \\
& \gamma_{F}=\frac{I_{E n}}{I_{E n}+I_{E p}}=\frac{1}{1+\frac{D_{p E}}{D_{n B}} \frac{W_{B}}{W_{E}} \frac{N_{A B}}{N_{D E}}} \\
& \alpha_{T}=\frac{I_{C n}}{I_{E n}}=\frac{1}{1+\frac{1}{2}\left(\frac{W_{B}}{L_{n B}}\right)^{2}} \\
& \beta_{F}=\frac{\alpha_{F}}{1-\alpha_{F}} \\
& \alpha_{F}=\frac{\beta_{F}}{1+\beta_{F}}
\end{aligned}
$$

