ECE 305 - Spring 2018

Homework 10 - Due Tuesday, April 10, 2018 at 12:00 PM in class (or in EE 326B)

- 1. The gate electrode of an MOS capacitor (MOS-C) is often in fact heavily doped polycrystalline silicon. These are designed to act almost like metals, with a Fermi level close to the conduction band minimum or valence band maximum. Consider a case where $E_F E_C = 0.1$ eV for the gate, and $E_F E_C = -0.4$ eV in the non-degenerately doped crystalline silicon substrate. Assume that the electron affinities of polycrystalline and crystalline silicon are identical.
 - a. Please sketch the equilibrium energy band diagram for the polysilicon gate MOS-C.
 - b. What is the effective "metal"-semiconductor workfunction for this band diagram, and is this value small enough to be neglected for most calculations? Why?
 - c. Will the given MOS-C be in accumulation, flat band, depletion, or inversion for $V_G = 0$? Justify your answer. **Hint:** this may be different from the case where $V'_G = 0$.
- 2. Consider the input-output relation (left) and transfer characteristics (right) for a field-effect transistor made from a 2D semiconductor material (WSe₂) depicted below. Assume the power supply voltage V_{DD} =1.2 V, oxide capacitance C_{ox} =3 μ F/cm², channel width W=2 μ m, R_s = R_D =5 Ω .

- a. What are the on and off currents for this transistor?
- b. What is the threshold voltage for this transistor? Justify your answer.
- c. What is the average subthreshold swing for $V_{DS}=1$ V? Explain how you find it.
- d. What is the drain-induced barrier lowering for this transistor? Explain how you find it.
- e. What is the inversion layer charge density for this transistor in the on state (in μ C/cm²)?
- f. What is the channel resistance in the on state when V_{DS} =0.25 V?