
ECE 305 - Spring 2018

Homework 3 – Due Tuesday, February 6, 2018 at 12:00 PM in class or in EE 326B

- 1. Assume that one has a p-type doped single-crystal wafer of silicon ($N_A = 4 \cdot 10^{16} \text{ cm}^{-3}$) at room temperature (T = 300 K).
 - a. If all acceptors are fully ionized, what is the hole density *p*?
 - b. Based on part (a), the temperature, and material, what is the electron density n?
 - c. Now apply a contact to the top of this wafer, such that $p = 8 \cdot 10^{16} \text{ cm}^{-3}$ on the top, while the bottom is the same as before. Assume it is 300 µm thick. What is the diffusion current J_p^{diff} associated with this configuration?
 - d. What drift current J_p^{drift} and electric field \mathcal{E} would now be required to make the total current zero?
- 2. Consider a crystalline silicon device that is described by the band diagram below when at room temperature (T = 300 K).

- a. Sketch the logarithm of the electron density n as a function of position x in this device.
- b. Sketch the electric field as a function of position *x* in this device.
- c. Sketch the electron drift and diffusion currents (J_n^{drift} and J_n^{diff} , respectively) as a function of position x in this device.
- d. Are these values consistent with this device being in equilibrium? Justify your response.