
ECE 305 - Spring 2018

Homework 5 - Due Tuesday, February 20, 2018 at 12:00 PM in class (or EE 326B)

1. Consider the electric field as a function of position x for a crystalline silicon pn junction diode (T = 300 K, $n_i = 1.1 \cdot 10^{10} \text{ cm}^{-3}$, and $K_s = 11.8 \text{ everywhere}$), as shown below:

- a. Sketch the voltage V as a function of position x. Assume $\lim_{x\to\infty} V(x) = 0$.
- b. Sketch the charge density $\rho(x)$.
- c. If $N_D = 3 \cdot 10^{16}$ cm⁻³ and $N_A = 10^{16}$ cm⁻³, what is the built-in voltage V_{bi} ?
- d. What are the resulting values of x_n and x_p ?
- e. What is the value of the electric field $\mathcal{E}(x)$ when x = 0?
- 2. Assume that the electrostatic potential in the depletion region of a pn junction diode under equilibrium conditions is determined to be:

$$V(x) = \frac{1}{2}V_{bi}\left[1 + \sin\left(\frac{\pi x}{W}\right)\right], \quad -W/2 \le x \le W/2$$

- a. Establish an expression for the electric field $\mathcal{E}(x)$ as a function of position in the depletion region $(-W/2 \le x \le W/2)$.
- b. Sketch $\mathcal{E}(x)$ in the depletion region.
- c. Calculate the charge density $\rho(x)$ in the depletion region.
- d. Assuming the depletion approximation holds, determine the net doping $N_D N_A$ versus position x in the depletion region.
- e. Sketch the net doping $N_D N_A$ versus position x in the depletion region.