ECE 305 - Spring 2018

Homework 6 Solution

1.

a. where $J_{0}=q\left(\frac{D_{n}}{L_{n}} \frac{n_{i}^{2}}{N_{A}}+\frac{D_{p}}{L_{p}} \frac{n_{i}^{2}}{N_{D}}\right)$
$L_{n}=\sqrt{D_{n} \tau_{n}}=8.53 \times 10^{-3} \mathrm{~cm}=85.3 \mu \mathrm{~m} \ll \mathrm{~W}_{\mathrm{p}}$. P-region can be modelled as long.
$L_{p}=\sqrt{D_{p} \tau_{p}}=3.42 \times 10^{-3} \mathrm{~cm}=34.2 \mu \mathrm{~m} \gg \mathrm{~W}_{\mathrm{n}}$. N-region can be modelled as short.
$\mathrm{W}_{\mathrm{n}}=1 \times 10^{-3} \mathrm{~cm}$
$J_{0}=q\left(\frac{D_{n}}{L_{n}} \frac{n_{i}^{2}}{N_{A}}+\frac{D_{p}}{W_{n}} \frac{n_{i}^{2}}{N_{D}}\right)=q\left(4.27 \times 10^{6}+11.7 \times 10^{8}\right) \mathrm{Acm}^{-2}=1.88 \times 10^{-10} \mathrm{Acm}^{-2}$
b.
$J_{D}=J_{0}\left(e^{q V_{A} / k_{B} T}-1\right)$
Where $J_{0}=1.88 \times 10^{-10} \mathrm{~A} \mathrm{~cm}^{-2}$
c.
$V_{A}=-0.4$
$\mathrm{J} \approx-\mathrm{J}_{0}=-1.88 \times 10^{-10} \mathrm{Acm}^{-2}$
$\mathrm{P} / \mathrm{A}=\mathrm{VJ}=7.52 \times 10^{-11} \mathrm{~W} \mathrm{~cm}^{-2}$
$\mathrm{V}_{\mathrm{A}}=0.4$
$\mathrm{J} \approx J_{0}\left(e^{q V_{A} / k_{B} T}-1\right) \approx 9.03 \times 10^{-4} \mathrm{Acm}^{-2}$
$\mathrm{P} / \mathrm{A}=\mathrm{VJ}=3.61 \times 10^{-4} \mathrm{~W} \mathrm{~cm}^{-2}$

The power consumption when the diode is reverse biased is comparatively very low as the current is comparatively very low at reverse bias. The power consumed is converted to heat.

2 a. $J=J_{0}\left(e^{q V_{A} / n k_{B} T}-1\right) \approx J_{0} e^{\frac{q V_{A}}{n k_{B} T}}$ as $J=10 \mathrm{~mA} \mathrm{~cm}^{-2}$ is quite large $V_{A}=\frac{n k T}{q} \ln \left(\frac{J}{J_{0}}\right)$
For $1<\mathrm{n}<2$

$$
\frac{k T}{q} \ln \left(\frac{J}{J_{0}}\right)<V_{A}<\frac{2 k T}{q} \ln \left(\frac{J}{J_{0}}\right)
$$

$\mathrm{J}=10 \mathrm{~mA} \mathrm{~cm}^{-2}$
J_{0} is not given, so any numerical answer depends on the value of J_{0} chosen, for instance J_{0} from problem 1.

Alternatively,

Finding ideality factor n first for the red dots, (as shown in 2 b .)
$\mathrm{n}=1.84$
At $10 \mathrm{~mA} \mathrm{~cm}{ }^{-2}$ current density, $\mathrm{V}_{\mathrm{A}} \approx 0.5 \mathrm{~V}$
Therefore for $1<\mathrm{n}<2$, as $V_{A}=\frac{n k T}{q} \ln \left(\frac{J}{J_{0}}\right) \propto n$

$$
0.27 V<V_{A}<0.54 V
$$

b. $V_{A}=\frac{n k T}{q} \ln (J)-\frac{n k T}{q} \ln \left(J_{0}\right)=\frac{n}{40} \times \ln (10) \times \log _{10}(J)-$ constant

$$
\frac{40}{n} \times \frac{1}{\ln (10)} \times V_{A}+\text { constant }=\log _{10}(J)
$$

Graph of $\log \mathrm{J}$ (the powers on the numbers on y axis) vs V_{A} is given.
Slope of the graph $=\frac{40}{n} \times \frac{1}{\ln (10)}$
Taking the furthest red points,
Slope of red points: slope between $(0.08,-2.71),(0.4,0.41) \approx 9.75$
Therefore $\mathrm{n}=40 / 9.4 \times 1 / \ln (10) \approx 1.84$ assuming room temperature. This is reasonable as $1<\mathrm{n}<2$. (Reasonable solution is acceptable)

