Homework 7 – Due Tuesday, March 20, 2018 at 12:00 PM in class (or in EE 326B)

- 1. Assume that we have a solar cell consisting of a one-sided pn junction, where the lightly-doped (n-type) side has doping $N_D=10^{17}$ /cm³, width $W_N = 10 \mu m$, minority carrier $\mu_p=450 \text{ cm}^2/\text{V}\cdot\text{s}$ and minority carrier $\tau_p=1 \mu s$. The other side has doping $N_A=3\cdot10^{18}$ /cm³, width $W_P = 15 \mu m$, minority carrier $\mu_n=1400 \text{ cm}^2/\text{V}\cdot\text{s}$, and minority carrier $\tau_n=3 \mu s$. The short circuit current per unit area $J_{sc} = 28 \text{ mA/cm}^2$ under AM1.5 illumination ($P_{in} = 100 \text{ mW/cm}^2$), and ideality factor n = 1. All values are at room temperature.
 - a. Calculate the dark current per unit area.
 - b. Calculate the open-circuit voltage of this cell.
 - c. Sketch the current-voltage relation for this solar cell in the power-producing quadrant (i.e., when $0 \le V \le V_{oc}$), with voltage on the x-axis. Be sure to label the x and y-axes and include at least two specific numerical values.
 - d. Estimate the fill factor. <u>Hint</u>: use $FF = \frac{z_{oc} \ln(z_{oc} + 0.72)}{z_{oc} + 1}$, where $z_{oc} = qV_{oc}/nk_BT$ is the reduced open-circuit voltage.
 - e. Calculate the power conversion efficiency.
- 2. An ideal rectifying metal-semiconductor contact has a Schottky barrier of 0.5 eV and built-in voltage $V_{bi} = 0.3$ eV at room temperature. Assume that the semiconductor is n-type gallium arsenide ($\chi = 4.07$ eV, $K_s = 12.9$).
 - a. Calculate the metallic workfunction Φ_M .
 - b. Calculate the doping of the gallium arsenide.
 - c. Calculate the depletion width W (for $V_A = 0.2$ V).
 - d. Calculate the maximum electric field $\mathcal{E}(0)$ (for $V_A = 0.2$ V)
 - e. Assuming that the critical breakdown field $\mathcal{E}_{cr} = 4 \cdot 10^5$ V/cm (in the GaAs), what are the corresponding values of V_A and V_R at which breakdown would be expected?