ECE 305 – Spring 2018

Homework 8 Solution

1. a.

x intercept:
$$0=V_{bi} - V_A$$
 or $V_{bi} = V_A = \frac{-0.0009}{-0.0011} = 0.818 V$
b.
Slope= $\frac{-2}{qN_DK_S\varepsilon_0A^2}$
Slope in F⁻² = -0.0011× 10²⁴ = -1.1× 10²¹
 $N_D = \frac{-2}{qK_S\varepsilon_0A^2 \times \text{Slope}}$
 $\varepsilon_0 = 8.854 \times 10^{-14} F/cm$
A=3× 10⁻³ cm⁻²
 $K_S = 11.8$
 $N_D = 1.21 \times 10^{15} \ cm^{-3}$

a. & b.

c.

 $I_L=-qA$ (L_N+W+L_p) G_L (according to SDF Section 9.2.1), L_x being minority carrier recombination length

=-qA(W+L_p) G_L if p-side is taken as having 0 dimension.

As recombination length is not given, it is assumed that all the carriers generated in 100 μ m contribute to photocurrent.

 $I_L=-qA(100 \ \mu m)$

 $J_L=-q(100 \ \mu m) \ G_L=-q(0.01 \ cm) \ G_L=-0.04 \ A \ cm^{-2}$

At zero voltage the net current density is approximately equal to the photocurrent.

At Voc the net current is zero.

d.