ECE 305 - Spring 2018

Homework 8 Solution

1. a .

$$
\frac{1}{C_{j}^{2}}=\frac{2}{q N_{D} K_{S} \varepsilon_{0} A^{2}}\left(V_{b i}+V_{R}\right)=\frac{2}{q N_{D} K_{S} \varepsilon_{0} A^{2}}\left(V_{b i}-V_{A}\right)
$$

x intercept: $0=V_{b i}-V_{A}$ or $V_{b i}=V_{A}=\frac{-0.0009}{-0.0011}=0.818 \mathrm{~V}$
b.

Slope $=\frac{-2}{q N_{D} K_{S} \varepsilon_{0} A^{2}}$
Slope in $\mathrm{F}^{-2}=-0.0011 \times 10^{24}=-1.1 \times 10^{21}$
$N_{D}=\frac{-2}{q K_{S} \varepsilon_{0} A^{2} \times \text { Slope }}$

$$
\varepsilon_{0}=8.854 \times 10^{-14} \mathrm{~F} / \mathrm{cm}
$$

$\mathrm{A}=3 \times 10^{-3} \mathrm{~cm}^{-2}$
$K_{S}=11.8$
$N_{D}=1.21 \times 10^{15} \mathrm{~cm}^{-3}$
2.
a. \& b.

c.
$L_{L}=-q A\left(L_{N}+W+L_{p}\right) G_{L}$ (according to SDF Section 9.2.1), L_{x} being minority carrier recombination length
$=-q A\left(W+L_{p}\right) G_{L}$ if p-side is taken as having 0 dimension.
As recombination length is not given, it is assumed that all the carriers generated in $100 \mu \mathrm{~m}$ contribute to photocurrent.
$\mathrm{L}=-\mathrm{qA}(100 \mu \mathrm{~m})$
$J_{L}=-q(100 \mu \mathrm{~m}) \mathrm{G}_{\mathrm{L}}=-\mathrm{q}(0.01 \mathrm{~cm}) \mathrm{G}_{\mathrm{L}}=-0.04 \mathrm{Acm}^{-2}$
d.

At zero voltage the net current density is approximately equal to the photocurrent. At Voc the net current is zero.

