NAME:	PUID:
-------	-------

Week 11 Quiz: MOS Fundamentals ECE 305: Semiconductor Devices

Mark Lundstrom, Purdue University, Spring 2015

Answer the **multiple choice questions** below by choosing the **one, best answer**.

1) When majority carriers pile up at the oxide-Si interface, what is the bias con	dition?
---	---------

- a) Accumulation.
- b) Flatband.
- c) Depletion.
- d) Deep depletion.
- e) Inversion
- 2) When majority carriers are pushed away from the oxide-Si interface, what is the bias condition?
 - a) Accumulation.
 - b) Flatband.
 - c) Depletion.
 - d) Deep depletion.
 - e) Inversion
- 3) When minority carriers pile up at the oxide-Si interface, what is the bias condition?
 - a) Accumulation.
 - b) Flatband.
 - c) Depletion.
 - d) Deep depletion.
 - e) Inversion.
- 4) When the charge density is zero in the semiconductor, what is the bias condition?
 - a) Accumulation.
 - b) Flatband.
 - c) Depletion.
 - d) Deep depletion.
 - e) Inversion.
- 5) What is the parameter, $\phi_{\scriptscriptstyle F}$?
 - a) A measure of the bandbending in the semiconductor.
 - b) A measure of the volt drop across the oxide.
 - c) A measure of how far below the intrinsic level the Fermi level is.
 - d) A measure of how far above the intrinsic level the Fermi level is.
 - e) The metal workfunction.

- 6) An MOS capacitor can be thought of as:
 - a) Two constant capacitors in series.
 - b) Two constant capacitors in parallel.
 - c) One constant and one bias dependent capacitor in series.
 - d) One constant and one bias dependent capacitor in parallel.
 - e) Two bias dependent capacitors in series.
- 7) When $V_G = V_T$, what is the bandbending in the semiconductor?
 - a) $\phi_{F}/2$.
 - b) ϕ_F .
 - c) $3\phi_{F}/2$.
 - d) $2\phi_F$.
 - e) $5\phi_{E}/2$.
- 8) If the oxide capacitance per cm² is C_{ox} , and the charge per cm² in the semiconductor is Q_{s} , what is the voltage drop across the oxide?
 - a) $Q_S C_{ox}$
 - b) $-C_{ox}/Q_{S}$
 - c) $-Q_S/C_{ox}$
 - d) $Q_S + C_{ox}$.
 - e) $Q_S C_{ox}$.
- 9) How are "high" and "low -frequency" MOS C-V characteristics different?
 - a) In accumulation. the high-frequency cap is lower than the low-frequency cap.
 - b) At flatband, the high-frequency cap is lower than the low-frequency capacitance.
 - c) In depletion, the high-frequency cap is lower than the low-frequency capacitance.
 - d) In depletion, the high-frequency cap is higher than the low-frequency capacitance.
 - e) In inversion the high-frequency cap is lower that the low-frequency capacitance.
- 10) What is a typical thickness of an SiO₂ layer in modern MOS technology?
 - a) 0.1 0.2 nm.
 - b) 1-2 nm.
 - c) 5-6 nm.
 - d) 10-20 nm.
 - e) 100-200 nm.