NAME:	PUID: :
-------	---------

Week 2 Quiz ANSWERS: Carrier Properties ECE 305: Semiconductor Devices

Mark Lundstrom
Purdue University, Spring 2015

Answer the **multiple choice questions** below by choosing the **one**, **best answer**.

- 1) To treat electrons in the conduction band as classical particles, what must we do?
 - a) Replace the charge on an electron in vacuum with an effective charge.
 - b) Replace the rest mass of an electron in vacuum with an effective mass.
 - c) Include relativistic effects.
 - d) Increase the temperature to the melting point of the semiconductor.
 - e) Decrease the temperature to zero.
- 2) Which of the following is true about an intrinsic semiconductor?
 - a) Electron concentration, *n*, equals hole concentration, *p*.
 - b) The concentration of electrons is n_e .
 - c) The concentration of holes is n_i .
 - d) The concentration of electrons and holes increases with increasing temperature.
 - e) All of the above.
- 3) Which of the following atoms would be an n-type dopant in Si?
 - a) Ga (a column III) element)
 - b) Si (a column IV element)
 - c) As (a column V element)
 - d) 0 (a column VI element)
 - e) F (a column VII element)
- 4) Where is a donor level located on an energy band diagram?
 - a) Far above E_C
 - b) A little below E_c
 - c) About midway between E_C and E_V
 - d) A little above E_{ν}
 - e) Way below E_{ν}

- 5) What is a typical donor binding energy for a donor in Si?
 - a) 10 eV
 - b) 1 eV
 - c) 0.5 eV
 - d) 0.05 eV
 - e) 0.005 eV
- 6) What does the quantity, $g_C(E)dE$ represent?
 - a) The number of electrons in the conduction band between E and E + dE
 - b) The number of states in the conduction band between E and E + dE
 - c) The number of donor states between E and E + dE
 - d) The number of acceptor states between E and E + dE
 - e) The number of Si atoms with energies between E and E + dE
- 7) Which of the following is the Fermi function?

 - a) $f = 1/\left(1 e^{(E E_F)/k_B T}\right)$ b) $f = 1/\left(1 + e^{(E E_F)/k_B T}\right)$ c) $f = 1/\left(1 e^{(E + E_F)/k_B T}\right)$

 - d) $f = 1/(1 + e^{(E+E_F)/k_BT})$ e) $f = 1/(1 e^{(E_F-E)/k_BT})$
- 8) Assume that the Fermi level is near the valence band. Which of the following is true?
 - a) n = p = n
 - b) $n > p, n >> n_i$
 - **c)** $p > n, p >> n_i$
 - d) $n \gg n_i$
 - e) n + p = n