NAME:	PUID:
-------	-------

Week 3 Quiz ANSWERS Equilibrium Carrier Concentrations ECE 305: Semiconductor Devices

Mark Lundstrom
Purdue University, Spring 2015

Answer the multiple choice questions below by choosing the one, best answer.

- 1) Consider Si doped with Phosphorous ($N_D \approx 10^{15} \ {\rm cm^{-3}}$, $E_C E_D = 0.045 \ {\rm eV}$). Where is the Fermi level located at T=0 K?
 - a) Near the middle of the bandgap.
 - b) In the upper half of the bandgap.
 - c) In the lower half of the bandgap.
 - d) Below E_C and above E_D .
 - e) Above E_C .
- 2) Consider Si doped with Phosphorous ($N_D \approx 10^{15}$ cm⁻³, $E_C E_D = 0.045$ eV). Where is the Fermi level located at T = 300 K?
 - a) Near the middle of the bandgap.
 - b) In the upper half of the bandgap.
 - c) In the lower half of the bandgap.
 - d) Below E_C and above E_D .
 - e) Above E_C .
- 3) Consider Si doped with Phosphorous ($N_D \approx 10^{15} \text{ cm}^{-3}$, $E_C E_D = 0.045 \text{ eV}$). Where is the Fermi level located at T = 600 K? (HINT: $n_i (600 \text{ K}) = 4 \times 10^{15} \text{ cm}^{-3}$.)
 - a) Near the middle of the bandgap.
 - b) In the upper half of the bandgap.
 - c) In the lower half of the bandgap.
 - d) Below E_C and above E_D .
 - e) Above E_c .
- 4) Which of the following is true in equilibrium?
 - a) $n = n_i = 1/p$
 - b) $n = N_C$
 - c) $np = N_C N_V$
 - **d)** $np = n_i^2$
 - e) $np = 1/n_i^2$

- 5) Which of the following is true for a non-degenerate semiconductor in equilibrium?
 - a) $p = n_i e^{(E_F E_V)/k_B T}$.
 - b) $p = n_i e^{\left(E_V E_F\right)/k_B T}$

 - c) $p = n_i e^{(E_F E_i)/k_B T}$ d) $p = n_i e^{(E_i E_F)/k_B T}$ e) $p = n_i e^{(E_F + E_i)/k_B T}$
- 6) Which of the following is true for a non-degenerate semiconductor in equilibrium?
 - a) $p = N_{\nu} e^{(E_F E_{\nu})/k_B T}$.
 - **b)** $p = N_V e^{(E_V E_F)/k_B T}$ c) $p = N_V e^{(E_F E_i)/k_B T}$

 - d) $p = N_V e^{(E_i E_F)/k_B T}$
 - e) $p = N_{\nu} e^{(E_F + E_i)/k_B T}$
- 7) What is the **electron concentration** in Si at 300 K with a boron doping of

$$N_A = 10^{17} \text{ cm}^{-3}$$
?

- a) $n = 10^{10} \text{ cm}^{-3}$
- b) $n = 10^{17} \text{ cm}^{-3}$
- c) $n = 10^3 \text{ cm}^{-3}$
- d) $n = 10^6 \text{ cm}^{-3}$
- e) $n = 10^9 \text{ cm}^{-3}$
- 8) What is the mathematical statement of space charge neutrality?
 - a) n = p.
 - b) $n = N_D$.
 - c) $n = N_D^+ N_A^-$.
 - **d)** $n + N_A^- = p + N_D^+$
 - e) $n + N_A^- + p + N_D^+ = 0$
- 9) As temperature increases from 0 K to high temperature, the carrier concentration goes through three regions. In what order does the transition occur?
 - a) intrinsic, extrinsic, freezeout
 - b) extrinsic, intrinsic, freezeout
 - c) freezeout, intrinsic, extrinsic
 - d) freezeout, extrinsic, intrinsic
 - e) intrinsic, freezeout, extrinsic