Week 5 Quiz: Equilibrium Carrier Concentrations ECE 305: Semiconductor Devices

Mark Lundstrom, Purdue University, Spring 2015

Answer the **multiple choice questions** below by choosing the **one**, **best answer**.

- 1) Which of the following is a statement of "low-level injection" in an n-type semiconductor?
 - a) $N_D \ll N_A$.
 - b) $N_A << N_D$.
 - c) $n_0 << N_D$.
 - d) $\Delta p \ll n_0$.
 - e) $\Delta p \approx \Delta n$.
- 2) Which of the following is true about $\nabla \cdot \vec{J}_N$?
 - a) $\nabla \cdot \vec{J}_N = (\partial J_{Nx}/\partial x)\hat{x} + (\partial J_{Ny}/\partial y)\hat{y} + (\partial J_{Nz}/\partial z)\hat{z}$.
 - b) $\nabla \cdot \vec{J}_N = (\partial^2 J_{Nx}/\partial x^2)\hat{x} + (\partial^2 J_{Ny}/\partial y^2)\hat{y} + (\partial^2 J_{Nz}/\partial z^2)\hat{z}$.
 - c) $\nabla \cdot \vec{J}_N = (\partial J_{Nx}/\partial x) + (\partial J_{Ny}/\partial y) + (\partial J_{Nz}/\partial z)$.
 - d) $\nabla \cdot \vec{J}_N = (\partial^2 J_{Nx}/\partial x^2) + (\partial^2 J_{Ny}/\partial y^2) + (\partial^2 J_{Nz}/\partial z^2)$.
 - e) $\nabla \cdot \vec{J}_N = \sqrt{J_{Nx}^2 + J_{Ny}^2 + J_{Nz}^2}$.
- 3) What is the name of this equation: $\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot \vec{J}_N + \frac{\partial n}{\partial t} \bigg|_{\substack{thermal \\ R-G}} + \frac{\partial n}{\partial t} \bigg|_{\substack{other \\ processes}} ?$
 - a) The Poisson equation.
 - b) The minority carrier electron diffusion equation.
 - c) The electron continuity equation.
 - d) The Shockley-Read-Hall equation.
 - e) The electron current equation.
- 4) Which of the following is the minority carrier electron diffusion length?
 - a) $L_N = \sqrt{\mu_n/\tau_n}$.
 - b) $L_N = \sqrt{D_n/\tau_n}$.
 - c) $L_N = \sqrt{\mu_n \tau_n}$.
 - d) $L_N = \sqrt{D_n \tau_n}$.
 - e) $L_N = \sqrt{\mu_n \mathcal{E} \tau_n}$.

ECE-305 Week 5 Quiz continued:

- 5) The minority carrier diffusion equation (MDE) makes which of the following assumptions?
 - a) Low-level injection.
 - b) Electric field is zero.
 - c) Steady-state conditions.
 - d) a) and b) above.
 - e) a) and c) above.
- 6) Which one of the following describes the parameter τ_n in a p-type semiconductor?
 - a) It is the average time it takes for an electron to diffuse across the region.
 - b) It is the average time between scattering events.
 - c) It is the average time before a minority carrier electron recombines with a hole.
 - d) It is the average time for an electron to drift across the region.
 - e) None of the above.
- 7) How many boundary conditions are required for the 1D MDE?
 - a) 0.
 - b) 1.
 - c) 2.
 - d) 3.
 - e) 4.
- 8) What approximations are requited to write the MDE as $d^2 \Delta n_p / dx^2 = 0$?
 - a) Steady-state.
 - b) No thermal R-G.
 - c) No "other processes" such as photogeneration.
 - d) All of the above.
 - e) None of the above.
- 9) If the quasi-Fermi levels are split, what does it mean?
 - a) That current is flowing.
 - b) That there are excess carriers.
 - c) That the semiconductor is degenerate.
 - d) All of the above.
 - e) None of the above.

ECE-305 Week 5 Quiz continued:

- 10) When is $np = n_i^2$?
 - a) Under steady-state conditions.
 - b) Under low-level injection.
 - c) When an electric field is absent.
 - d) Only for a nondegenerate semiconductor in equilibrium.
 - e) When the diffusion constant is spatially uniform.
- 11) If there is a slope to the quasi-Fermi level, what does it mean?
 - a) That current is flowing.
 - b) That there are excess carriers.
 - c) That the semiconductor is degenerate.
 - d) All of the above.
 - e) None of the above.
- 12) For an n-type semiconductor with excess holes and electrons, which of the following is true?
 - a) $F_n = F_p$.
 - b) $F_n > F_p$.
 - c) $F_n < F_p$.
 - d) $F_n * F_p = E_F^2$.
 - e) None of the above.