NAME:	PUID:
-------	-------

Week 7 Quiz: PN Junction Electrostatics and Ideal Diode Equation ECE 305: Semiconductor Devices

Mark Lundstrom, Purdue University, Spring 2014

Answer the multiple choice questions below by choosing the one, best answer.

- 1) Which of the following is the Poisson equation for the depleted N-side of a PN junction?
 - a) $dV/dx = +qN_D/(K_S \varepsilon_0)$.
 - b) $dV/dx = -qN_D/(K_S \varepsilon_0)$.
 - c) dV/dx = 0.
 - d) $d\mathcal{E}/dx = +qN_D/(K_S \varepsilon_0)$.
 - e) $d\mathcal{E}/dx = -qN_D/(K_S \varepsilon_0)$.
- 2) Which of the following statements about a one-sided PN junction $N_{\scriptscriptstyle D}>>N_{\scriptscriptstyle A}$ is true?
 - a) The peak electric field in the depletion region varies as $\sqrt{V_{_{bi}}}$ and $\sqrt{N_{_A}}$.
 - b) The peak electric field in the depletion region varies as $1/\sqrt{V_{_{bi}}}$ and $\sqrt{N_{_{A}}}$.
 - c) The peak electric field in the depletion region varies as $\sqrt{V_{bi}}$ and $1/\sqrt{N_{A}}$.
 - d) The peak electric field in the depletion region varies as $1/\sqrt{V_{_{bi}}}$ and $1/\sqrt{N_{_{A}}}$.
 - e) The peak electric field in the depletion region varies as $V_{\scriptscriptstyle bi}$ and $\sqrt{N_{\scriptscriptstyle A}}$.
- 3) Which of the following statements about a one-sided PN junction $N_D >> N_A$ is true?
 - a) The depletion region width varies as $\sqrt{V_{_{bi}}}$ and $\sqrt{N_{_{A}}}$.
 - b) The depletion region width varies as $1/\sqrt{V_{_{bi}}}$ and $\sqrt{N_{_{A}}}$..
 - c) The depletion region width varies as $\sqrt{V_{_{bi}}}\,$ and $1\!\big/\sqrt{N_{_{A}}}\,.$
 - d) The depletion region width varies as $1/\sqrt{V_{bi}}$ and $1/\sqrt{N_{_A}}$.
 - e) The depletion region width varies as $V_{\scriptscriptstyle bi}$ and $\sqrt{N_{\scriptscriptstyle A}}$.
- 4) What is the physical meaning of the area under $\mathcal{E}(x)$ vs. x?
 - a) It is the total doping density in the transition region.
 - b) It is equal to the bandgap of the semiconductor.
 - c) It is the net space-charge density in the transition region.
 - d) It is the net dipole moment of the junction.
 - e) It is the built-in potential of the junction.

- 5) Which of the following is true about the energy barrier that keeps electrons on the N-side and holes on the P-side?
 - a) It <u>increases</u> under forward bias and <u>decreases</u> under reverse bias.
 - b) It increases under forward bias and increases under reverse bias.
 - c) It decreases under forward bias and decreases under reverse bias.
 - d) It decreases under forward bias and increases under reverse bias.
 - e) It decreases under forward bias and does not change under reverse bias.
- 6) What is the mathematical statement of the "law of the junction"?
 - a) $np = n_i^2$.
 - b) $np = n_i^2 e^{qV_A/k_B T}$.
 - c) $np = n_i^2 e^{qV_A/2k_BT}$.
 - d) $np = n_i^2 e^{qV_{bi}/k_BT}$.
 - e) $np = n_i^2 e^{qV_{bi}/2k_BT}$.
- 7) For an ideal diode, the **forward bias** $(V_A > 0)$ current is proportional to e^{qV_A/nk_BT} . What is the value of n for an ideal diode?
 - a) n = 0.
 - b) n = 0.5.
 - c) n = 1.0.
 - d) n = 1.5.
 - e) n = 2.0.
- 8) For an ideal diode, the **reverse bias** ($V_{\rm A}$ < 0) current is proportional to what?
 - a) $-V_A$.
 - b) $\sqrt{-V_A}$.
 - c) $(-V_A)^{1/3}$.
 - d) $\left(-V_{A}\right)^{2}$.
 - e) $\left(-V_{A}\right)^{0}$.