NAME:	PUID:
-------	-------

Week 8 Quiz: Deviations from Ideal and Small Signal Model ECE 305: Semiconductor Devices

Mark Lundstrom, Purdue University, Spring 2015

Answer the **multiple choice questions** below by choosing the **one**, **best answer**.

- 1) Which of the following is true about "impact ionization"?
 - a) It is the cause of avalanche breakdown.
 - b) It can be initiated by either electrons or holes.
 - c) It generates both electrons and holes.
 - d) All of the above.
 - e) None of the above.
- 2) What effect does quantum mechanical tunneling have on a PN junction?
 - a) It can lead to reverse breakdown at low voltages (-5 < V < 0).
 - b) It can lead to reverse breakdown at high voltages (V < -15).
 - c) It can lead to current "roll-off" at high voltages.
 - d) It can increase the series resistance of a diode.
 - e) It is the most common cause for n = 2 currents at low forward bias.
- 3) Why does the reverse bias current increase as the square root of voltage in a Si diode?
 - a) Because of quantum mechanical tunneling.
 - b) Because of impact ionization.
 - c) Because of recombination in the transition region.
 - d) Because of generation in the transition region.
 - e) Because of series resistance.
- 4) What is the primary reason for the strong temperature dependence of the forward biased current in an N+P junction?
 - a) The D_n term in J_0 .
 - b) The L_n term in J_0 .
 - c) The N_{A} term in J_{0} .
 - d) The n_i^2 term in J_0 .
 - e) None of the above

- 5) Which of the following is true about the small signal model of a PN junction?
 - a) It consists of a resistor in series with a capacitor.
 - b) It consists of a resistor in parallel with a capacitor.
 - c) It consists of a resistor in series with an inductor.
 - d) It consists of a resistor in parallel with an inductor.
 - e) It consists of a resistor in parallel with a capacitor in parallel with an inductor.
- 6) Which of the following is true about the resistor in the small signal model of a diode?
 - a) It has a very large value in reverse bias and a very small value in forward bias.
 - b) It is equal to $\left(dI_{D}/dV_{A}\right)^{-1}$.
 - c) In forward bias, it is very close to $\left(k_{_B}T/q\right)\!/I_{_D}\,$.
 - d) All of the above.
 - e) None of the above.
- 7) Which of the following is true of the <u>junction</u> capacitance?
 - a) It is proportional to $1/\sqrt{V_{bi}-V_{_A}}$.
 - b) It is proportional to $\sqrt{V_{bi} V_{_A}}$.
 - c) It is proportional to $1/(V_{bi} V_{A})$
 - d) It is proportional to $(V_{bi} V_{A})$.
 - e) It is proportional to $\exp(qV_{\scriptscriptstyle A}/k_{\scriptscriptstyle B}T)$.
- 8) Which of the following is true of the <u>diffusion</u> capacitance?
 - a) It is proportional to $1/\sqrt{V_{bi}-V_A}$.
 - b) It is proportional to $\sqrt{V_{\it bi}-V_{\it A}}$.
 - c) It is proportional to $1/(V_{bi}-V_{A})$
 - d) It is proportional to $(V_{bi} V_{A})$.
 - e) It is proportional to $\exp(qV_A/k_BT)$.
- 9) What is $\Delta n = (n_i^2/N_A)(e^{qV_A/k_BT}-1)$ called?
 - a) The Einstein relation .
 - b) The Caughey-Thomas relation.
 - c) The second law of thermodynamics.
 - d) Moore's Law
 - e) The Law of the Junction.