Introduction to: Bipolar Junction Transistors (BJTs)

(Ch. 10: pp. 371 – 385)

Professor Mark Lundstrom
Electrical and Computer Engineering
Purdue University, West Lafayette, IN USA
lundstro@purdue.edu

11/24/14

Outline

1) Introduction
2) Review of PN junctions under bias
3) IV Characteristics
SiGe HBTs

Martin Claus
TU-Dresden

Circuit board of an Iphone 5

Digital processor (CMOS)
16 GByte Memory (CMOS)
Power Management
RF front-end (analog modules for communication)

MOS transistors

n-channel enhancement mode MOSFET

\[I_D \approx 0 \]

saturation

linear region

Lundstrom 11.24.14
bipolar transistors

C: collector
B: base
E: emitter

NPN BJT

(forward) active region

saturation region

I_C

V_CE

I_C

V_{BE}, I_{B1}

understanding MOSFETs

To understand this device, we should first draw an Energy Band Diagram.
equilibrium energy band diagram

V_G

E

E_C

E_F

E_Y

source channel drain

Lundstrom ECE 305 F14

how transistors work

2007 N-MOSFET

$L = 100 \text{ nm}$

$Lundstrom ECE 305 F14$
NPN bipolar transistor

KCL:

\[I_b + I_c = I_E \]

KVL:

\[V_{BE} + V_{CB} = V_{CE} \]
transistor structures

double diffused BJT

common base (active region)

BE: FB $V_{EB} < 0$

BC: RB $V_{CB} > 0$
To understand this device, we should first draw an Energy Band Diagram.
final result: one semiconductor with 3 regions

how bipolar transistors work
1) Introduction
2) Review of PN junctions under bias
3) IV Characteristics

NP junction in equilibrium

\[P_0 = e^{-qV_{bi}/k_BT} \]

\[J_1 = J_0 \]
NP junction in FB

\[J_1 = J_0 e^{\frac{qV_A}{k_B T}} \]

\[J_0 \]

\[J = J_1 - J_0 = J_0 \left(e^{\frac{qV_A}{k_B T}} - 1 \right) \]

NP junction in RB

\[J_1 = J_0 e^{\frac{qV_A}{k_B T}} \]

\[J_1 \ll J_0 \]

\[J = J_1 - J_0 \approx -J_0 \]
NP junction in RB

\[J = J_0 \left(e^{V_{bi}/kT} - 1 \right) \]

NP junction in FB

Examine the minority electron concentration in the neutral p-region assuming a short p-type region (short base).
NP junction in FB

\[\Delta n(x) = \frac{n_i^2}{N_A} \left(e^{qV_A/k_B T} - 1 \right) \]

\[J_n = qD_n \frac{d\Delta n(x)}{dx} \bigg|_{x=0} \]

\[J_n = q \frac{D_n}{W_B} \Delta n(0) \]

\[J_n = q \frac{D_n}{W_B} n_i^2 \left(e^{qV_A/k_B T} - 1 \right) \]

NP junction in FB

\[J_p = q \frac{D_p}{W_E} n_i^2 \left(e^{qV_A/k_B T} - 1 \right) \]
1) Introduction
2) Review of PN junctions under bias
3) IV Characteristics

NPN BJT operation

The large current that flows from the collector to emitter is due to electrons.
NPN BJT operation (I_C)

FB/RB FB/RB

\[I_1 = q \frac{D_n}{W_B} n_i^2 (e^{\frac{V_{BE}}{kT}} - 1) \quad I_2 = q \frac{D_n}{W_B} n_i^2 (e^{\frac{V_{BC}}{kT}} - 1) \quad I_C = (I_1 - I_2) \]

\[I_C = I_0 (e^{\frac{V_{BE}}{kT}} - e^{\frac{V_{BC}}{kT}}) \quad I_0 = q \frac{D_n}{W_B} n_i^2 \]

(forward) active region

\[I_C = I_0 (e^{\frac{V_{BC}}{kT}} - e^{\frac{V_{BC} - V_{CE}}{kT}}) \]

\[V_{CE} = V_{BE} + V_{CB} \]

\[V_{CE} = V_{BE} - V_{BC} \]

\[V_{BC} = V_{BE} - V_{CE} \]

\[I_C = I_0 (e^{\frac{V_{BC}}{kT}} - e^{\frac{V_{BC} - V_{CE}}{kT}}) \]

\[I_C = I_0 e^{\frac{V_{BC}}{kT}} (1 - e^{-qV_{CE}/kT}) \]
NPN BJT operation (forward active I_C)

\[I_C = I_0 e^{V_{BE}/kT} \]

\[I_0 = \frac{q D_n n_t^2}{W_B N_{AB}} \]

(forward) active region

\[I_C = I_0 \left(e^{V_{BE}/kT} - e^{V_{EC}/kT} \right) \]

\[I_C = I_0 e^{V_{BE}/kT} \left(1 - e^{-V_{CE}/kT} \right) \]

\[V_{BC} = V_{BE} - V_{CE} \]
NPN BJT operation (saturation)

$$I_C = I_0 e^{\frac{\phi_{sc}}{kT}} \left(1 - e^{-\frac{qV_{CE}}{kT}} \right)$$

$$I_0 = q \frac{D_n}{W_B} \frac{n_i^2}{N_{AB}}$$

BJT operation: base current (active region)

$$I_p = q \frac{D_p}{W_E} \frac{n_i^2}{N_{DE}} \left(e^{\frac{\phi_{sc}}{kT}} - 1 \right)$$
beta in the (forward) active region

\[I_B = I_p = q \frac{D_{pe} n_i^2}{W_E N_{DE}} (e^{\frac{qV_{BE}}{kT}} - 1) \]

\[I_C = I_n = q \frac{D_{ne} n_i^2}{W_B N_{AB}} e^{\frac{qV_{BE}}{kT}} \]

\[\beta_{dc} = \frac{I_C}{I_B} = \frac{D_{ne} N_{DE} W_E}{D_{pe} N_{AB} W_B} \]

\[I_B = \frac{I_0}{\beta_{dc}} e^{\frac{qV_{BE}}{kT}} \]

\[I_0 = q \frac{D_{ne} n_i^2}{W_B N_{AB}} \]

common emitter (active region)

\[I_C = I_0 e^{\frac{qV_{BE}}{kT}} \]

\[I_0 = q \frac{D_{ne} n_i^2}{W_B N_{AB}} \]

\[I_B = \frac{I_0}{\beta_{dc}} e^{\frac{qV_{BE}}{kT}} \]
NPN bipolar transistor

\[I_C = \beta I_B \]

\[I_E = I_B + I_C = I_C \left(1 + \frac{1}{\beta_{dc}} \right) \]

\[I_C = \frac{I_E}{1 + 1/\beta_{dc}} = \frac{\beta_{dc}}{\beta_{dc} + 1} I_E \]

\[I_C = \alpha_{dc} I_E \]

\[\alpha_{dc} = \frac{\beta_{dc}}{\beta_{dc} + 1} < 1 \quad \beta_{dc} = \frac{\alpha_{dc}}{1 - \alpha_{dc}} >> 1 \]

BE: FB \quad V_{BE} > 0

BC: RB \quad V_{CB} = V_{CE} - V_{BE} > 0

 invert active

common base (active region)

Pierret, Fig. 10.4
1) Introduction
2) Review of PN junctions under bias
3) IV Characteristics

(Ch. 10: pp. 371 – 385)