Answer the **multiple choice questions** below by choosing the **one, best answer**.

1) When majority carriers pile up at the oxide-Si interface, what is the bias condition?

 a) **Accumulation.**
 b) Flatband.
 c) Depletion.
 d) Deep depletion.
 e) Inversion

2) When majority carriers are pushed away from the oxide-Si interface, what is the bias condition?

 a) Accumulation.
 b) Flatband.
 c) **Depletion.**
 d) Deep depletion.
 e) Inversion

3) When minority carriers pile up at the oxide-Si interface, what is the bias condition?

 a) Accumulation.
 b) Flatband.
 c) Depletion.
 d) Deep depletion.
 e) **Inversion**

4) When the charge density is zero in the semiconductor, what is the bias condition?

 a) Accumulation.
 b) **Flatband.**
 c) Depletion.
 d) Deep depletion.
 e) Inversion.

5) What is the parameter, ϕ_f?

 a) A measure of the bandbending in the semiconductor.
 b) A measure of the volt drop across the oxide.
 c) **A measure of how far below the intrinsic level the Fermi level is.**
 d) A measure of how far above the intrinsic level the Fermi level is.
 e) The metal workfunction.
6) An MOS capacitor can be thought of as:
a) Two constant capacitors in series.
b) Two constant capacitors in parallel.
c) One constant and one bias dependent capacitor in series.
d) One constant and one bias dependent capacitor in parallel.
e) Two bias dependent capacitors in series.

7) When $V_G = V_T$, what is the bandbending in the semiconductor?
a) $\phi_F/2$.
b) ϕ_F.
c) $3\phi_F/2$.
d) $2\phi_F$.
e) $5\phi_F/2$.

8) If the oxide capacitance per cm2 is C_{ox}, and the charge per cm2 in the semiconductor is Q_S, what is the voltage drop across the oxide?
a) $Q_S C_{ox}$
b) $-C_{ox}/Q_S$
c) $-Q_S/C_{ox}$.
d) $Q_S + C_{ox}$
e) $Q_S - C_{ox}$.

9) How are “high” and “low-frequency” MOS C-V characteristics different?
a) In accumulation, the high-frequency cap is lower than the low-frequency cap.
b) At flatband, the high-frequency cap is lower than the low-frequency capacitance.
c) In depletion, the high-frequency cap is lower than the low-frequency capacitance.
d) In depletion, the high-frequency cap is higher than the low-frequency capacitance.
e) In inversion the high-frequency cap is lower than the low-frequency capacitance.

10) What is a typical thickness of an SiO$_2$ layer in modern MOS technology?
a) 0.1 – 0.2 nm.
b) 1-2 nm.
c) 5-6 nm.
d) 10-20 nm.
e) 100-200 nm.