ECE 305 Spring 2015

SOLUTIONS: ECE 305 Homework: Week 3

Mark Lundstrom
Purdue University

1) Assume Silicon (bandgap 1.12 eV) at room temperature (300 K) with the Fermi level
located exactly in the middle of the bandgap. Answer the following questions.

a) What is the probability that a state located at the bottom of the conduction band is
filled?

b) What is the probability that a state located at the top of the valence band is empty?

Solution:
1
1a) Begin with the Fermi function: f(E) = AT
l+e 777
For our problem: E=E_
1 _(EC_EF)/kBT
f(EC) - 1+ e(EC—EF)/kBT =e

The approximation is extremely good, because the bottom of the conduction band is
very far above the Fermi level. The semiconductor is said to be nondegenerate.

E +E
E == 5 ~ (The Fermi level is exactly in the middle of the bandgap.)
E +E, E. -E, E
EC_EF:EC_ C2 V: C2 VZTG
so the probability is
F(,) = B _
E =1.12eV k,T=0.026eV E,/[2k,T=21.5

f(E)=e "o/ = e = 443107

What if we had not made the non-degenerate approximation? Then
3 1 3 1 B 1 B 10
f(EC) = 1t e(EC—EF)/kBT Tt 14226%10° 4.43%10

Same answer as with the non-degenerate assumption because this semiconductor is
non-degenerate.
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HW3 Solutions (continued):
1

E-E,)/kyT

1b) Begin again with the Fermi function: f(E) = (
l+e

For this part: E=E,

1

B )=

The Fermi function gives the probability that a state is full. We want the probability
that the state is empty, which is

1 e(EV_EF)/kBT 1
1- f(EV) =1- 1+ e(EV—EF)/kBT = 1+ e(EV—EF)/kBT = e—(E,,—EF)/kBT +1
1 ~(Ep—E,)/kyT
1- f(EV)z 1+e(EF—EV)/kBT =e | /

The approximation is extremely good, because the Fermi level is very far above the
top of the valence band. The nondegenerate approximation can be used for the
valence band too.

E +E
E. =—*¢ 5 ~ (The Fermi level is exactly in the middle of the bandgap.)

F

E+E, . _E.-E _E,

EF_EV: 1% 9 )

so the probability is
1— f(E ): e_(EI-'_EV)/kBT —e G/kBT
V

1- f(E,)=e """ =4.43x107"°

As expected, when the Fermi level is exactly in the middle of the bandgap, the
probability that a state at the conduction band edge is occupied is exactly the same
as the probability that a state at the valence band edge is empty.

2) For Siatroom temperature, calculate the following quantities. (Numerical answers
required, and don’t forget to include units with your answers).

a) The density of states in the conduction band, g,. (E), atan energy 26 meV above ..
b) The density of states in the valence band, g, (E ), atan energy 26 meV below £, .
c) The effective density of conduction band states. N ..

d) The effective density of valence band states, N, .

e) Compute the ratio of the effective density of conduction band states to the atomic
density of Si.
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HW3 Solutions (continued):
Solution:

2a) Begin with the DOS expression (SDF, eqn.(2.6a), p. 41)

m\J2m (E—E
g.(E)= ﬂz(h3 ) E>E,

LN\32

My 2m, m

gc(E): 2 [;) E-E,.
0

3/2

11x107°3'Y2%x9.11x107 [ m

gC(E):9 x10 X9 X? (ﬂ] ,/E—EC (everything in MKS (SI) units)
3.142><(1.06><10‘34) m

0

L \32
gC(E)=1.05x1056(ﬂ] E-E,

m,

According to SDF, p. 34, mn/m0 =1.18
g.(E)=1.05x10%(1.18)" JE- E, =135x10* JE- E_(J-m*)"

Note the units. This is the number of states per unit energy (in Joules) per unit
volume (in cubic meters).

We are asked for the density of states 26 meV (milli electron volts) above the
bottom of the conduction band. In Joules:

E—-E.=0.026x1.60x10" =4.16x107"J

2.(0.026 eV+E_)=135x10"V4.16x10™ L _g7ixi0nL

J-m J-m
The answer is correct, but the units are inconvenient. Let’s express the answer per
eV per cubic cm, which is the more typical way of doing things for semiconductors.

3

1 1.6x107"J 1 107%m
0026 eV+E )=871x10¥ = x—— ~—_x

gC( C) J eV m’ [ cm j

0.026eV+E )=139%x10" ———
a ) eV-cm’
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HW3 Solutions (continued):
Note: The total number of states in a range of energy of k,T'=0.026 eV is
approximately

2.(0.026 eV +E_)x0.026=3.62x10" _,

cm’
which is a reasonable number, as we shall see below. This answer is approximate,
because to get the total number of states in the bottom k,T" of the conduction band,
we should do the integral

Nror = .[i+kBTgC(E)dE :

A note about units. Calculations should be done in the MKS system of units (also
called SI). All of the fundamental constants (e.g. Plank’s constant, Boltzmann’s
constant, rest mass of an electron, etc.) are in these units. After we have an answer,
it is often convenient to convert to different units. For example, in semiconductor
work, we like to quote carrier and doping densities per cubic cm, not per cubic
meter, which is the proper MKS unit.

Be careful about units!

2b) Begin with the DOS expression (SDF, eqn.(2.6b), p. 41)

*«/2 “(E,-E
gV(E):mp n:;;a'/ ) E<E,

> . \32
gV(E):uiﬂ] E,~E

’n’ m,

9.11x107'y2x9.11x1073" [ m
o (£)= (

3/2
3.14°%(1 06><10*34)3 ;"] By =& {everything In MKS (S1) units)

0

m,

X \3/2
m
gV(E)=1.05><1056[—p] E,-E

According to SDF, p. 34, mp/mo =0.81
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HW3 Solutions (continued):

g,(E)=1.05x10%(0.81)" \[E, - £ =7.65x10% \[E, - E(Jm*)

Note that the DOS in the valence band is a little smaller than in the conduction band
because the hole effective mass is smaller than the electron effective mass.

We are asked for the density of states 26 meV (milli-electron volts) below the top of
the valence band. In Joules

E,—E=0.026x1.60x107""=4.16x107"J

1
g.(E, —0.026 eV)=7.65x10%v4.16x10™ L _soaxi0nL

J-m J-m
The answer is correct, but the units are inconvenient. Let express the answer per eV
per cubic cm, which is the more typical way of doing things for semiconductors.

3
1 1.6x107"J 1 107%m
E —0.026eV)=4.94x10¥ —x———~—_x
& (£ ) ] oV m ( ]

cm

E —0.026eV)=7.90x10"" ———
&5, ) eV-cm’

Note: The total number of states in a range of energy of k,T'=0.026 eV is
approximately

g,(E, —0.026 €V)x0.026 =2.06x 10" L
cm

which is a reasonable number, as we shall see below.

2c) This is a problem about the “effective density of states” which is different from the
density-of-states. The effective density of states, is roughly the total number of states

in an energy range of k,T near the bottom of the conduction band or top of the

valence band. Itis derived by integration as discussed in the text. The resultis given
in SDF on p. 51

L N\3/2
1
N, =2.510x10" [ﬁJ

3

m, cm

Using m, =1.18m,, we find
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HW3 Solutions (continued):

N, =2.510x10" (1.18)"" em™=3.22x10" cm™

N.= 3.22%x10" cm™

Note that this is close to the value we estimated in part 2a):

2.(0.026 eV +E_)x0.026=3.62x10" L
cm

So we can interpret the conduction band effective DOS as the number of states
within about on k,T" of the bottom of the conduction band.
2d) Repeat 2c) but for the valence band.
m, m

« \32
m
NV=2.510><1019[—P] %
C

Using m_=0.81m,, we find

N, =2510x10" (0.81)"" em™=1.83x10" cm™

N, = 1.83x10" ¢m™

Note that this is close to the value we estimated in part 2b):

g, (E, —0.026 eV)x0.026 =2.06x 10" L
cm

2€) Recall the atomic density of Siis N, =5.00x10* cm™ so the ratio

N. 3.22x10"

—C = =6.44x107"
N, 5.00x10

N

—C€=0.06%

NSi

The number of states near the bottom of the conduction band that can be occupied
is a small fraction of the density of silicon atoms.
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HW3 Solutions (continued):

3) Consider a region of Si at room temperature. For each of the following cases, calculate
the equilibrium electron and hole concentrations (n and p). Assume that the dopants
are fully ionized.

a) Intrinsic material (N,=N, =0)

A
b) N,=1.00x10"cm® N,=0
¢) N,=100x10"cm> N,=0
d N,=0 N,=1.00x10" cm”

e) N,=100x10"cm> N,6=3.00x10" cm”
Solution:

3a) For intrinsic material, we know that n= p=n.. According to SDF, p. 54,

n.=1.00x10" cm” so

n=p=n= 1.00x10" cm™

3b) First, let’s ask what to expect. The donor density is 1000 times the intrinsic density.
All of the donor electrons will go in the conduction band, overwhelming the number
of intrinsic carriers that were there. So we expect

n=N,=100x10" cm”
We would determine the hole density from np = nf, SO

2 2 20
n n 10
p=—t=—t-=—>2=1.00x10"cm”

n N, 10
Note that doping the semiconductor n-type means that we now have more electrons
in the conduction band, and we have fewer holes in the valence band than for the

intrinsic semiconductor.

How would we do this problem more accurately?

Begin by assuming that the semiconductor is neutral:
p—n+N;-N, =0
Assume that the dopants are fully ionized and use p = ",2 / n

2

BN, -N,=0
n
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HW3 Solutions (continued):

Solve the quadratic equation for n

2
nzND_NA+ Np= N, +n
2 2 !

Plug in numbers:

13 _ 13)2
p=0 =0, (1(; j +10° =0.5%10" +4/0.25% 10% +10%

2

=0.5x10" + \/0.25>< 10*° +0.000001x 10°*°

n=0.5x10"+0.5x10" =1.0x10"

n=1.00x10"cm?

Just as expected. We find the hole density from

nz nz 1 20
— L =——=1.00x10" cm’
n ND 10

p:

p=1.00x10" cm?

3c) First, let’s ask what to expect. The donor density is 10’ times the intrinsic density. All
of the donor electrons will go in the conduction band, overwhelming the number of
intrinsic carriers that were there. So we expect

n=N,=100x10" cm>
We would determine the hole density from np = nf , SO

2 2
n’ n 107

n N._. 107

D

p= =1.00x10* cm™

Note that doping the semiconductor n-type means that we now have more electrons
and we have fewer holes than the intrinsic semiconductor.

Now do this problem more accurately.

Use the quadratic equation for n:
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HW3 Solutions (continued):

2
nzND_NA+ Np= N, +n
2 2 !

Plug in numbers:

17 17\
n:102 0, (12 j +10° =0.5%10"7 +40.25%10* +10%

=0.5%x10"7 +40.25x10* +0

n=0.50x10"+0.50x10" =1.00x 10"

n=1.00x10" ¢cm™

Just as expected. Next, we find the hole density from

2 2 20
: : 1

p:n_lzn—l: 017 =1.00%x10° cm™
n N, 10

p=1.00x10’ cm™

3d) Again, let’s ask what to expect. The acceptor density is 10’ times the intrinsic density.
All of the acceptor holes will go in the valence band, overwhelming the number of
intrinsic carriers that were there. So we expect

p=N,=100x10" cm”
We would determine the electron density from np = nf , SO

l 20
_10 =1.00x10° cm>

017 -

2 2
n.oon
n:—z—
p NA

Note that doping the semiconductor p-type means that we now have more holes in
the valence band, and we have fewer electrons in the conduction band than the
intrinsic semiconductor.

Now do this problem more accurately.

Use the quadratic equation for p:
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HW3 Solutions (continued):

2
p:NA_ND+ N, =Ny +n
2 2 '

Plug in numbers:

P=" 2

=0.5%x10"7 ++40.25x10* +0

p=0.50x10" +0.50x 10" =1.00x 10"

2
17 17
107 -0, (10 j+102°=0.5><10”+Jo.25x1034+102°

p=1.00x10" cm?

Just as expected. We find the electron density from
R 1

l l

—~—L =——=1.00x10*cm™
p N, 10

n=

n=1.00x10°cm?

3e) Since the net p-type dopingis N,— N, =3x10" —1x10" =2x10" is much greater
than the intrinsic density, we expect: p=2x10" and n=n’/p=0.5x10" cm® . This
is correct, as we can see by solving the problem properly.

2 2
p:NA;ND+\/(NA;ND] +",2=3X1017;1X1017+\/(2X210”j L 10%

p=1x10" +42x10* +10° =2x10"

p=2x10" cm”
2 2 20

L —= 10 —=5.00x10’ cm™
p  2x107  2x10

n=5.00x10* cm™
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HW3 Solutions (continued):
One might conclude from these examples, that there is no need to use space-charge
neutrality and the quadratic equation. That would be wrong, as seen in the next

problem. It only happened in this problem because in each case (except for case a)), the
net doping was much larger than the intrinsic carrier density.

4) Assuming silicon with completely ionized dopants, compute n and p for the following
case.

N, =5.00x10" cm®
N,=0
T=700K

Solution:

We expect the intrinsic carrier density to be MUCH larger at higher temperatures.
Using the information on p. 57 of SDF, we have

n,(700 K)=2.865x10" cm

This is close to the doping density, so we need to use the quadratic equation.
2
n= Np—N, + Np= N, +n
2 2 '

n=2.5x10" +\/(2.5>< 10°) +(2.865%10°)

n=2.5%10"+v6.25x10" +8.21x 102 =6.3x10'

n=6.3x10" cm>

2
n? (2:865%10°)  g21x10®

P T T 63%x10° | 63x10°

=1.30x10"% cm?

p=130x10"cm™
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HW3 Solutions (continued):
5) This problem asks you to compute the location of the Fermi level.

5a)  For each of the cases (a-e) in Prob. 3, calculate the Fermi level position, with
respect to the intrinsic level (E o Ei) . Note that you need to consider sign.

Solution:

In problem 3), we computed n and p. For this problem, we need an expression that
relates n and p to the Fermi level and intrinsic level. The expressions are on p. 53 of

SDF:
n= nie(EF—E,.)/kBT
p — nie(Er_EF)/kBT

Solving for (E e Ei) from the first equation, we have

(E,-E)= kBTln[ﬁj

n.

1

or in electron volts

E.-E) kT
(E:=E) _ky h{ﬁ]:o.ozeln(%j
10

q q h

i

For the case of 3a) n=p=n=1.00x10" cm™

(E-E) 0.0261n(1)=0
q

~———"=0| or we could say: (EF _Ei)=0eV

For the case of 3b) n=1.00x10" ¢cm”

E —-E 13
M = 0.026ln[ilj =0.180

q 010

M:O.ISO
q

ECE-305 12 Spring 2015



ECE 305 Spring 2015

HW3 Solutions (continued):

For the case of 3c) n=1.00x10" cm™

(B -E)_ 0.026ln(igiz J =0.0261n(107)=0.419
q

M:OAD
q

Note: The larger the n-type doping, the higher the Fermi level is above the intrinsic
level.

For the case of 3d) n=1.00x10" cm™

(B~ E) _ o.ozéln(lloi:o) =0.026In(107)=-0.419
q

M:—OAD
q

Note the sign - the Fermi level is now below the intrinsic level because this is a p-
type semiconductor.

For the case of 3e) n=5.00x10>cm”

(B -E)_ o.ozéln(ﬂ] =0.026In(5x10")=-0.437
p 10

M =-0.437
q

Also a p-type semiconductor, so the Fermi level is below the intrinsic level.
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HW3 Solutions (continued):

5b)  For each of the cases (a-e) in Prob. 3, calculate the Fermi level position, with
respect to the bottom of the conduction band (Er - Ec). Note that you need to
consider sign.

Solution:

This is basically the same problem as 5a) - we just want to know the position of the
Fermi level with respect to another energy, bottom of the conduction band instead
of the intrinsic level.

To solve this problem, we need an expression that relates n to the Fermi level and
bottom of the conduction band. The expression is on p. 52 of SDF:

n=N e(EF—EC)/kBT
c

Solving for (EF - EC) we have

(E, —Ec):kBTln(NiJ

C
or in electron volts

E.-E) kT
(£, C): 5 h{ij:o.ozéln(ij
NC

q q c

We computed N, in prob. 2c: N_.=322x10" cm™

M = 0.026ln(L]

q 3.22x10"

Note that this quantity will be negative for a non-degenerate semiconductor,
because the Fermi level is always well below the conduction band.

For case 3a) n=p=n=1.00x10" cm”

E.-E 10
M:O.O%ln ng =—0.569
q 3.22x10

@ =—0.569| or we could say: (EF - EC) =-0.569 eV
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HW3 Solutions (continued):

For the case of 3b) n=1.00x10" ¢cm”

(E: =) __ 399

E.-E B
M:O.O26ln ng =—0.390
3.22x10

q q
For the case of 3¢) n=1.00x10"" cm”
E.-E 7 E.—E
M:O.O26ln Lw =—0.150 M:—o.lso
q 3.22x10 q

Note: The larger the n-type doping, the closer the Fermi level is to the conduction
band.

For the case of 3d) n=1.00x10" cm”

(E: =) 4 g
q

E.-E 3
M:O.O26ln ng =—0.988
q 3.22x10

Note: This value is getting close to the bandgap of Si. The Fermi level is getting
close to the top of the valence band.

For the case of 3¢) n=5.00x10>cm”

M =0.0261n
q

5x10°
3.22x10"

Jz—l.Ol

(Ec=Ec) __) o
q

Also a p-type semiconductor, so the Fermi level is close to the top of the valence
band.

5c) For the case of problem 4), calculate the Fermi level position, with respect to the
intrinsic level (E o Ei) . Note that you need to consider sign.

Solution:

The electron density was n=6.3x10'" cm”

and the intrinsic carrier concentration was . (700 K) =2.865%10" cm™

(EF_E‘)

1

k,T
q q R,
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HW3 Solutions (continued):

k,T 138x107x700

at T=700K: 5
q 1.6x10

=0.0604 eV

E _E 16
(= E) _ g o601m 0306048
g 2.865x10

(E:=5) g oug
q

The Fermi level is almost in the middle of the gap - very close to the intrinsic level.
This happens because n=6.3x10" cm™ is only a little bigger than . (700 K) :
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