

course objectives	
To introduce students to the fundamentals of semiconductors and semiconductors devices.	
Lundstrom ECE-606 S13	2

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image><image><image><image><image><image><image><image><image>

Purdue's semiconductor history

"Karl Lark-Horovitz is best known for turning the physics department of Purdue University, then a backwater school, into a research powerhouse. His personal research was in germanium and solid state science -and if anyone had had a chance of inventing the transistor before Bell, it was Lark-Horovitz. As it was, the Purdue physics lab was probably only six to twelve months behind."

http://www.pbs.org/transistor/album1/ addlbios/lark.html

5

1941: WWII: Semiconductor diode rectifiers http://www.computerhistory.org

Lundstrom ECE-606 S13

electronics in the 21st Century CMOS transistors for logic III-V transistors for RF A/D and D/A convertors Digital Signal processor Microprocessor ROM and FLASH memory CMOS imager Gyroscope MEMS devices Magnetometer www.apple.com Microphone, speaker LCD display and touch screen 6 Lundstrom ECE-606 S13

course outline	
Part 1: Semiconductor Fundamentals: Part 2: PN diodes, MS diodes, and LEDs Part 3: Transistors	7 weeks 2 weeks 6 weeks
Lundstrom ECE-606 S13	21

Week 1: In	troduction / Geometry of Crystals
Reading As	signment: Applied Semiconductor Fundamentals, 2nd ed., R.F. Pierret, pp. 10-17
ECE 606 Le Quiz 1 Wee ECE 606 Le Quiz 2 Wee	cture 1: Introduction k1Quiz1.pdf (42.9 <u>Kb</u>) cture 2: Geometry of Periodic Crystals k1Quiz2.pdf (40.61 <u>Kb</u>)
Week 1 Hor Week 1 Hor	nework Assignment Week1HW.pdf (132.86 Kb) nework Solution
Week 1: An	swers to Quizzes
Week 1: Re	ferences and Supplementary Information

	gı	rading			
Lecture quiz	zes and questions:	25%			
Exams (5 at	15% each)	75%			
Quiz score = x/total times 25%, where x is the number of quizzes you turned in and passed and total is the total number of lectures in the course.					
Exam score = average of the percentage scores of the 5/6 best exams scores including any retake.					
Approximat	e curve:				
A:	91 - 100%				
B:	81 – 90%				
C:	81 – 90% 71 – 80%				

Steven Chu:					
"Learning science and thinking about science or reading a paper in science is not about learning what a person did. You have to do that, but to really absorb it, you have to turn it around and cast it in a form as if you invented it yourself. You have to look and be able to see things that other people looked at and didn't see before.					
How do you do that? There are two ways. Either you man a new instrument, and it gives you better eyes, Or you try to internalize it in such a way that it really become intuitive.	ke J es				
Lundstrom ECE-606 S13	25				

