Week 13 Quiz Answers ECE 606: Solid State Devices

Mark Lundstrom Purdue University, Spring 2013

Quiz 1:

Answer the **four multiple choice questions** below by choosing the **one**, **best answer**.

- 1) What is the "flatband voltage" of an MOS capacitor?
 - a) The surface potential of an MOS capacitor for $V_G = 0$.
 - b) The voltage drop across the oxide for $V_G = 0$.
 - c) Another term for $2\phi_E$.
 - d) The voltage that must be applied to the gate in order to make the band bending in the semiconductor zero.
 - e) The voltage that must be applied to the gate in order to make the semiconductor intrinsic at the surface.
- 2) What effect does a metal-semiconductor work function difference have on a C(V) characteristic for an MOS capacitor?
 - a) It increases the oxide capacitance.
 - b) It decreases the oxide capacitance.
 - c) It increases the inversion capacitance.
 - d) It decreases the inversion capacitance.
 - e) It translates the $C(V_G)$ vs. V_G characteristic to the left or right on the voltage axis.
- 3) Assume that there is charge, $\rho_m(x)$, distributed within the oxide. Charge at what location in the oxide has the biggest effect on the threshold voltage?
 - a) At the top of the oxide, adjacent to the metal gate.
 - b) At the bottom of the oxide, next to the Si substrate.
 - c) At the center of the gate oxide.
 - d) Charge in the oxide has the same effect wherever it is located.
 - e) Charge in the oxide has no effect on the threshold voltage no matter where it is located.
- 4) What causes the "bias temperature instability"?
 - a) An increase in the magnitude of the charge in the oxide with increasing bias and temperature.
 - b) An decrease in the magnitude of the charge in the oxide with increasing bias and temperature
 - c) A change in the centroid of the charge distributed within the oxide cause by the application of a bias at an elevated temperature.
 - d) A change in the second moment of the charge distributed within the oxide...
 - e) A shift in threshold voltage caused by the break of silicon and oxygen bonds caused by the application of a bias at an elevated temperature.

Continued on next page

Quiz 2:

- 1) What is the purpose of a "forming gas anneal"?
 - a) To anneal the defects produced by ion implantation.
 - b) To tie up dangling bonds at the Si: SiO₂ interface with oxygen.
 - c) To tie up dangling bonds at the Si: SiO₂ interface with hydrogen.
 - d) To promote surface reconstruction to reduce dangling bonds on a Si surface.
 - e) To densify the SiO₂ and increase its breakdown voltage.
- 2) If the transition from depletion to inversion in an MOS CV characteristic is "stretched out", what does it indicate?
 - a) A high concentration of mobile ions in the oxide.
 - b) A high concentration of fixed charge at the oxide-Si interface.
 - c) A large metal-semiconductor workfunction difference.
 - d) A high concentration of dangling bonds that change charge state with gate bias.
 - e) It translates the $C(V_G)$ vs. V_G characteristic to the left or right on the voltage axis.
- 3) What is a "donor like" surface state?
 - a) A surface state that is neutral when filled.
 - b) A surface state that is neutral when empty.
 - c) A surface state that dopes the semiconductor surface n-type.
 - d) A surface state cause by the presence of a phosphorus or arsenic atoms on the surface.
 - e) A surface state located in energy very near the conduction band.
- 4) How do donor like and acceptor like surface states affect an MOS CV characteristic?
 - a) Donor like states stretch out the CV characteristic in voltage, but acceptor like states do not.
 - b) Acceptor like states stretch out the CV characteristic in voltage, but donor like states do not.
 - c) Both donor like and acceptor like surface states stretch out the CV characteristic, but in different voltage ranges.
 - d) Donor like states decrease the flat band capacitance
 - e) Acceptor like states decrease the flat band capacitance.

Quiz 3:

- 1) What is threshold voltage "roll-off"?
 - a) A reduction in the magnitude of the threshold voltage as the channel length decreases.
 - b) An effect caused by two-dimensional MOS electrostatics.
 - c) A reduction of gate control over the channel potential.
 - d) All of the above.
 - e) None of the above.
- 2) Why do transistor designers increase the substrate doping of a bulk MOSFET every technology generation?
 - a) To increase the threshold voltage.
 - b) To increase reliability.
 - c) To reduce threshold voltage roll-off.
 - d) To increase the oxide capacitance..
 - e) To lower the metal-semiconductor work function difference..
- 3) What is the primary motivation for replacing planar MOSFETs with FinFETs?
 - a) To lower series resistance.
 - b) To reduce parasitic capacitance.
 - c) To lower the noise figure.
 - d) To improve gate control over the channel and reduce threshold voltage roll off.
 - e) To decrease the subtreshold swing below 60 mV/decade.
- 4) Why are MOSFETs intentionally strained?
 - a) To reduce threshold voltage variations.
 - b) To lower the surface state density.
 - c) To decrease series resistance.
 - d) To increase the channel mobility and, therefore, the drain current.
 - e) To adjust the gate workfunction.