Week 7 Quiz Answers ECE 606: Solid State Devices

Mark Lundstrom Purdue University, Spring 2013

Quiz 1:

1) The "Drude" expression for mobility is one you want to remember. What is it?

a)
$$\mu = qm^*\tau$$

b)
$$\mu = q\tau/m^*$$

c)
$$\mu = qm^*/\tau$$

d)
$$\mu = m^*/q\tau$$

e)
$$\mu = 1/q\tau m^*$$

2) What is the temperature dependence of the mobility due to ionized impurity scattering?

a)
$$\mu \propto T^{-3/2}$$

b)
$$\mu \propto T^{-1/2}$$

c)
$$\mu \propto T^0$$

d)
$$\mu \propto T^{+1/2}$$

e)
$$\mu \propto T^{+3/2}$$

3) What is the temperature dependence of the mobility due to phonon (lattice) scattering?

a)
$$\mu \propto T^{-3/2}$$

b)
$$\mu \propto T^{-1/2}$$

c)
$$\mu \propto T^0$$

d)
$$\mu \propto T^{+1/2}$$

e)
$$\mu \propto T^{+3/2}$$

4) If we have scattering times due to 3 different processes, then what is the total scattering time when all three mechanisms operate at the same time?

a)
$$\tau_{tot} = \tau_1 + \tau_2 + \tau_3$$

b)
$$\tau_{tot} = \tau_1 \times \tau_2 \times \tau_3$$

c)
$$1/\tau_{tot} = 1/\tau_1 + 1/\tau_2 + 1/\tau_3$$

d)
$$1/\tau_{tot} = 1/\tau_1 \times 1/\tau_2 \times 1/\tau_3$$

e)
$$\tau_{tot} = \max(\tau_1, \tau_2, \tau_3)$$

Continued

Quiz 2:

- 4) Why are "4-probe" resistivity measurements used?
 - a) To measure the longitudinal and transverse mobility.
 - b) To simultaneously deduce the resistivity and carrier density.
 - c) To eliminate the effect of the contacts.
 - d) To provide two measurements that can be averaged.
 - e) To provide redundancy, in case some of the contacts are poor.
- 5) What does a Hall effect measurement measure?
 - a) The mobility
 - b) The Hall mobility
 - c) The carrier density and carrier type
 - d) The Hall carrier density and the carrier type
 - e) The effective mass
- 3) Diffusion involves random thermal motion and scattering. If the thermal velocity is v_T and the average distance between electron (or hole) scattering events is λ , what is the diffusion coefficient in cm²/s? (It's useful to remember this as well as the mobility expression.)
 - a) $D = v_T \lambda / 2$
 - b) $D = v_T/(2\lambda)$
 - c) $D = \lambda/2v_T$
 - d) $D = v_T^2 \lambda / 2$
 - e) $D = v_T \lambda^2 / 2$
- 4) The Einstein Relation, $D/\mu = k_B T/q$, relates the mobility to the diffusion coefficient. Under what conditions is it valid?
 - a) always
 - b) only at equilibrium or very near equilibrium
 - c) only for parabolic band semiconductors
 - d) only for direct gap semiconductors
 - e) only for indirect gap semiconductors

Quiz 3:

- 1) What is the continuity equation in words?
 - a) Rate of increase = (inflow outflow) + drift diffusion
 - b) Rate of increase = (inflow outflow) + generation recombination
 - c) Rate of increase = (inflow outflow)
 - d) Rate of increase = (inflow + outflow)
 - e) Rate of increase = (outflow + inflow) + generation recombination
- 2) What approximations / assumptions are made in deriving the minority carrier diffusion equation.
 - a) Steady-state conditions
 - b) No recombination
 - c) No generation
 - d) Low level injection
 - e) Validity of Einstein Relation
- 3) If minority carrier electrons are injected at the left face of a p-type semiconductor, and there is **no recombination-generation** in the semiconductor, and the right contact enforces equilibrium conditions (i.e. $\Delta n = 0$), how does the steady-state minority electron profile, $\Delta n(x)$, vary with position?
 - a) $\Delta n(x)$ decreases linearly with position from left to right.
 - b) $\Delta n(x)$ increases linearly with position from left to right.
 - c) $\Delta n(x)$ decreases as the square of distance from left to right.
 - d) $\Delta n(x)$ increases as the square of distance from left to right.
 - e) $\Delta n(x)$ decreases exponentially with position from left to right.
- If minority carrier electrons are injected at the left face of a p-type semiconductor, and there is **significant recombination** in the semiconductor, and the right contact enforces equilibrium conditions (i.e. $\Delta n = 0$), how does the steady-state minority electron profile, $\Delta n(x)$, vary with position?
 - a) $\Delta n(x)$ decreases linearly with position from left to right.
 - b) $\Delta n(x)$ increases linearly with position from left to right.
 - c) $\Delta n(x)$ decreases as the square of distance from left to right.

- d) $\Delta n(x)$ increases as the square of distance from left to right.
- e) $\Delta n(x)$ decreases exponentially with position from left to right

Quiz 4:

- 1) What are the three "semiconductor equations"?
 - a) Electron current, hole current, Poisson equation.
 - b) Electron continuity equation, hole continuity equation, Poisson equation.
 - c) Electron continuity equation, hole continuity eqn., SRH recombination formula.
 - d) Electron minority carrier diffusion equation, hole minority carrier diffusion equation, Poisson equation.
 - e) Electron current, electron continuity equation, Poisson equation.
 - 2) What are the three unknowns in the semiconductor equations?
 - a) Electron current, hole current, electric field.
 - b) Electron current, hole current, electrostatic potential.
 - c) Electron current, hole current, recombination rate.
 - d) Electron current, hole current, generation rate.
 - e) Electron density, hole density, electrostatic potential.
 - 3) What is meant by the term "control volume"?
 - a) It is the part of the device that controls the performance of the device.
 - b) It refers to a region about a specific grid point for which the discretized equations are formulated.
 - c) It is another term for "finite difference approximation".
 - d) It refers to "finite element" rather than "finite difference" discretization.
 - e) It refers to the need to control the size of volume being simulated so that the computational burden is manageable.
 - 4) To numerically solve the semiconductor equations, we must iterate. Why?
 - a) Because it is more efficient computationally.
 - b) Because the three equations are coupled.
 - c) Because the three equations are nonlinear.
 - d) Because the three equations are coupled and nonlinear.
 - e) Because the computer operates with finite precision arithmetic.