# Quiz Answers: Week 10

#### **ECE 656: Electronic Conduction In Semiconductors**

Mark Lundstrom Purdue University, Fall 2013 (Revised 10/30/13)

#### Lecture 23 Quiz:

- 1) The equation of motion for an electron in k-space is  $\frac{d(\hbar \vec{k})}{dt} = \vec{F}_e$ . What assumptions are necessary for this equation to be valid?
  - a) Parabolic energy bands.
  - b) Non-degenerate conditions.
  - c) No quantum mechanical reflections.
  - d) No B-field.
  - e) No temperature gradients.
- 2) Under what conditions is this equation valid?  $\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla_r f + \vec{F}_e \cdot \nabla_p f = 0$ 
  - a) No recombination-generation.
  - b) Equilibrium.
  - c) No scattering.
  - d) Position independent effective mass.
  - e) All of the above
- 3) What is the quantify,  $\sum_{p'} S(\vec{p}' \to \vec{p}) f(\vec{p}') [1 f(\vec{p})]$ ?
  - a) The collision integral.
  - b) The in-scattering rate.
  - c) The out-scattering rate.
  - d) The relaxation time approximation.
  - e) The collision operator.
- 4) What is the quantity,  $-\left(\frac{f(\vec{p}) f_0(\vec{p})}{\tau_m}\right)$ ?
  - a) The collision operator.
  - b) The collision operator in the relaxation time approximation.
  - c) The solution to the steady-state Boltzmann equation.
  - d) The in-scattering term of the collision operator.
  - e) The out-scattering terms of the collision operator.

(continued on next page)

- 5) In the solution to the steady-state Boltzmann equation,  $\delta f = \tau_{_m} \left( -\frac{\partial f_{_0}}{\partial E} \right) \vec{v} \cdot \vec{\mathcal{F}}$ , what is the term  $\vec{\mathcal{F}}$  called?
  - a) The electrochemical potential.
  - b) The chemical potential.
  - c) The statistical force.
  - d) The generalized force.
  - e) The electric field.

### **Lecture 24 Quiz:**

- 1) What is the quantity.  $\frac{1}{A} \sum_{k} (E F_n) \vec{v}(\vec{k}) f(\vec{r}, \vec{k})$ ? (*E* is the total energy.)
  - a) The energy density.
  - b) The energy flux.
  - c) The heat density.
  - d) The heat flux.
  - e) The kinetic energy flux.
- 2) In this equation,  $\hat{C}f = -\left(\frac{f(\vec{p}) f_S(\vec{p})}{\tau_m}\right)$ , what is  $f_S(\vec{p})$ ?
  - a) The distribution function.
  - b) The equilibrium distribution function.
  - c) A distribution with the shape of the equilibrium distribution function.
  - d) The Bose-Einstein distribution.
  - e) The anti-symmetric part of the distribution function.
- 3) How do we interpret the quantity,  $(\vec{v}\vec{v})$ ?
  - a) As a scalar.
  - b) As a vector.
  - c) As a second rank tensor.
  - d) As a third rank tensor.
  - e) None of the above.

(continued on next page)

4) For spherical bands, how is the average scattering time,  $\left\langle\left\langle \tau_{_{m}}\right\rangle\right\rangle$  defined?

- a)  $\langle v_x^2 \tau_m \rangle / \langle v_x^2 \rangle$ .
- b)  $\langle v^2 \tau_m \rangle / \langle v^2 \rangle$ .
- c)  $\langle (E E_C) \tau_m \rangle / \langle (E E_C) \rangle$ .
- d) All of the above.
- e) None of the above.
- 5) What is  $\frac{1}{\mu_{tot}} = \frac{1}{\mu_1} + \frac{1}{\mu_2}$  called?
- a) The Thompson relation.
- b) The Kelvin relation.
- c) The Wiedemann-Franz law.
- d) The Lorenz number.
- e) Mathiessen's rule.

## **Lecture 25 Quiz:**

- 3) Why is the BTE harder to solve in the presence of a B-field?
  - a) Because we are no longer near equilibrium.
  - b) Because non-degenerate statistics must be used.
  - c) Because the cross product makes the math more difficult.
  - d) Because the gradient in momentum space can no longer be approximated by the gradient of  $f_{\rm S}$ .
  - e) Because the gradient in position space can no longer be approximated by the gradient of  $f_{\rm S}$ .
- 4) In this equation,  $\vec{J}_n = \sigma_S \vec{\mathcal{E}} \sigma_S \mu_H (\vec{\mathcal{E}} \times \vec{B})$ , what is  $\mu_H$ ?
  - a) The mobility.
  - b) The effective mobility.
  - c) The conductivity mobility.
  - d) The chemical potential.
  - e) The Hall mobility.

(continued on next page)

- 3) What is the quantity,  $\left\langle \left\langle \tau_{_m}^2 \right\rangle \right\rangle / \left\langle \left\langle \tau_{_m} \right\rangle \right\rangle^2$  , called?
  - a) The Hall mobility.
  - b) The Hall coefficient.
  - c) The Hall factor.
  - d) The Hall concentration.
  - e) The Hall parameter.
- 4) What quantity does a Hall effect measurement find?
  - a) The Hall mobility.
  - b) The mobility.
  - c) The Hall concentration.
  - d) The carrier concentration.
  - e) The Hall resistivity.
- 6) What does the criterion  $\omega_c \tau_m << 1$  imply?
  - a) Electrons scattering many times before completing a cyclotron orbit.
  - b) The magnetic field low.
  - c) Shubnikov-deHaas oscillations will not be observed.
  - d) All of the above.
  - e) None of the above.