Week 10 Lecture 23 Quiz: The Boltzmann Transport Equation

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom
Purdue University, Fall 2013

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) The equation of motion for an electron in k-space is $\frac{d(\hbar \vec{k})}{dt} = \vec{F}_e$. What assumptions are necessary for this equation to be valid?
 - a) Parabolic energy bands.
 - b) Non-degenerate conditions.
 - c) No quantum mechanical reflections.
 - d) No B-field.
 - e) No temperature gradients.
- 2) Under what conditions is this equation valid? $\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla_r f + \vec{F}_e \cdot \nabla_p f = 0$
 - a) No recombination-generation.
 - b) Equilibrium.
 - c) No scattering.
 - d) Position independent effective mass.
 - e) All of the above
- 3) What is the quantify, $\sum_{p'} S(\vec{p}' \to \vec{p}) f(\vec{p}') [1 f(\vec{p})]$?
 - a) The collision integral.
 - b) The in-scattering rate.
 - c) The out-scattering rate.
 - d) The relaxation time approximation.
 - e) The collision operator.

- 4) What is the quantity, $-\left(\frac{f(\vec{p}) f_0(\vec{p})}{\tau_m}\right)$?
 - a) The collision operator.
 - b) .The collision operator in the relaxation time approximation.
 - c) The solution to the steady-state Boltzmann equation.
 - d) The in-scattering term of the collision operator.
 - e) The out-scattering terms of the collision operator.
- 5) In the solution to the steady-state Boltzmann equation, $\delta f = \tau_{\scriptscriptstyle m} \left(-\frac{\partial f_{\scriptscriptstyle 0}}{\partial E} \right) \vec{v} \bullet \vec{\mathcal{F}}$, what is the term $\vec{\mathcal{F}}$ called?
 - a) The electrochemical potential.
 - b) The chemical potential.
 - c) The statistical force.
 - d) The generalized force.
 - e) The electric field.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Wednesday, Oct. 30.