Week 11 Lecture 28 Quiz: Scattering: The BTE Revisited

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2013

Student's name:	

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) Mathematically, what is the solution to the equilibrium BTE?
 - a) The Fermi-function.
 - b) The Fermi function or the Bose-Einstein distribution.
 - c) Any function of kinetic energy.
 - d) Any function of total energy.
 - e) Any function of total momentum.
- 2) Which of the following statements is true in equilibrium?
 - a) The electrostatic potential is constant with position.
 - b) The chemical potential is constant with position.
 - c) The carrier density potential is constant with position.
 - d) The electrochemical potential is constant with position.
 - e) The electrochemical potential and temperature are constant with position.
- 3) What are the proper boundary conditions for the 1D BTE?
 - a) The carrier densities at the two contacts.
 - b) The incident and emerging fluxes are the two contacts.
 - c) The incident and emerging fluxes at one of the two contacts.
 - d) The incident fluxes at the two contacts.
 - e) The carrier densities at the two contacts.
- 4) In a ballistic device, the states in the devices fall into what two classes?
 - a) Spin up and spin down states.
 - b) Those fillable from contact one and those fillable from contact two.
 - c) Those fillable from contact one, those fillable from contact two, and those not fillable.
 - d) Conduction and valence band states.
 - e) None of the above.

- 5) What is the quantity: $\frac{h}{2L} \sum_{\vec{k}} |v_x| \delta(E E_k)$?
 - a) The transport distribution at energy, E.
 - b) The mean-free-path at energy, *E*.
 - c) The transmission at energy, E.
 - d) The diffusion coefficient at energy, E.
 - e) The number of channels at energy, *E*.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday, Nov. 1.