Week 12 Lecture 30 Quiz: Near-equilibrium Measurements: II

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom
Purdue University, Fall 2013
(Revised 11/5/13)

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) The measured mobility vs. temperature characteristic typically displays a maximum at a certain temperature. Which of the following statements is true at the maximum?
 - a) The semiconductor becomes degenerate.
 - b) The semiconductor becomes nondegenerate.
 - c) The free carriers freeze out.
 - d) Phonon scattering and ionized impurity scattering are equally important.
 - e) Phonon scattering is much more important that ionized impurity scattering.
- 2) Assume that $\vec{B} = B_z \hat{z}$ what is J_v according to $J_i = \sigma_S \mathcal{E}_i \sigma_S \mu_H \varepsilon_{iik} \mathcal{E}_i B_k$?
 - a) $J_v = \sigma_s \mathcal{E}_v$
 - b) $J_v = -\sigma_S \mu_H \mathcal{E}_x B_z$
 - c) $J_v = +\sigma_S \mu_H \mathcal{E}_x B_z$
 - d) $J_v = \sigma_s \mathcal{E}_v \sigma_s \mu_H \mathcal{E}_s B_s$
 - e) $J_y = \sigma_s \mathcal{E}_y + \sigma_s \mu_H \mathcal{E}_x B_z$
- 3) We have seen that for parabolic bands in 2D with non-degenerate conditions, $\left\langle\left\langle\tau_{\scriptscriptstyle m}\right\rangle\right\rangle = \tau_{\scriptscriptstyle 0} \, \Gamma(s+2)/\Gamma(2)$. What is the Hall coefficient, $r_{\scriptscriptstyle H} \equiv \left\langle\left\langle\tau_{\scriptscriptstyle m}^2\right\rangle\right\rangle / \left\langle\left\langle\tau_{\scriptscriptstyle m}\right\rangle\right\rangle^2$ is 2D?
 - a) $r_H = \Gamma(2s+2)/[\Gamma(2)]$.
 - b) $r_H = \Gamma(2s+2)\Gamma(2)/[\Gamma(s+2)]^2$
 - c) $r_H = \Gamma(2s+2)\Gamma(s+2)/[\Gamma(2)]^2$
 - d) $r_H = \Gamma(s+2)\Gamma(2)/[\Gamma(2s+2)]^2$
 - e) $r_H = \Gamma(3s+2)\Gamma(2)/[\Gamma(2s+2)]^2$.

(continued on next page)

- 4) Assume acoustic deformation potential (ADP) scattering (intravalley) dominates in a 2D semiconductor with parabolic energy bands. What is $\left\langle \left\langle \tau_{_{m}} \right\rangle \right\rangle$?
 - a) $\langle \langle \tau_m \rangle \rangle = \tau_0$.
 - b) $\langle \langle \tau_m \rangle \rangle = \tau_0 \Gamma(1/2) / \Gamma(2)$.
 - c) $\langle \langle \tau_m \rangle \rangle = \tau_0 \Gamma(1) / \Gamma(2)$.
 - d) $\langle \langle \tau_m \rangle \rangle = \tau_0 \Gamma(3/2) / \Gamma(2)$.
 - e) $\langle \langle \tau_m \rangle \rangle = \tau_0 \Gamma(5/2) / \Gamma(2)$.
- 5) If the measured conductivity is independent of sheet carrier density in graphene, what is the dominant scattering mechanism likely to be?
 - a) Acoustic deformation potential scattering.
 - b) Optical deformation potential scattering.
 - c) Plasmon scattering.
 - d) Ionized impurity scattering.
 - e) Polar optical phonon scattering.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday, Nov. $\bf 8$.