Week 13 Lecture 32 Quiz: Balance Equations: II

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2013

Student's name:	
-----------------	--

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) When we write a balance equation for a quantity, n_{ϕ} , we always end up with an unknown, that we must write a new balance equation for. What is this unknown?
 - a) The associated flux for the quantity.
 - b) The generation term for the quantity.
 - c) The recombination term for the quantity.
 - d) The recombination time in the recombination term.
 - e) The electron temperature.
- 2) What does the third moment of the BTE give us?
 - a) The carrier continuity equation.
 - b) The carrier flux equation.
 - c) The carrier energy balance equation.
 - d) The carrier energy flux equation.
 - e) The carrier energy squared continuity equation.
- 3) What is the quantity, W_{xx} ?
 - a) The total energy density.
 - b) The kinetic energy density.
 - c) The kinetic energy density associated with one of the degrees of freedom.
 - d) The kinetic energy density associated with one of the degrees of freedom when the bands are parabolic.
 - e) The kinetic energy density associated with one of the degrees of freedom when the bands are parabolic and the semiconductor is non-degenerate.

(continued on next page)

- 4) How is the hierarchy of balance equations terminated?
 - a) By assuming near-equilibrium conditions.
 - b) By assuming the Relaxation Time Approximation.
 - c) By invoking the Onsager Relations.
 - d) By expressing all of the quantities in the equations only in terms of quantities in the equations.
 - e) By using the NEGF equation.
- 5) When we write the recombination term in the various balance equations as $R_{\phi} = \left(n_{\phi} n_{\phi}^{0}\right) / \left\langle \tau_{\phi} \right\rangle$, sometimes a term corresponding to n_{ϕ} appears and a term corresponding to n_{ϕ}^{0} does not appear. Why?
 - a) Under near-equilibrium conditions.
 - b) Under spatially uniform conditions.
 - c) When the balance equation corresponds to a moment higher than 2.
 - d) When the balance equation corresponds to a moment higher than 3.
 - e) When the quantity in the balance equation is a flux.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday, Nov. 15.