Week 15 Lecture 37 Quiz: High-Field Transport

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom
Purdue University, Fall 2013
(Revised 11/12/13)

lent's name:
lent S name.

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) For high-field transport in a bulk semiconductor, we write the Einstein relation as $D_n/\mu_n = 2u_{xx}/q$. What is u_{xx} for a non-degenerate semiconductor with parabolic energy bands? (Assume that the drift energy is negligible).
 - a) $u_{rr} = nk_BT_e/2$, where T_e is the electron temperature.
 - b) $u_{xx} = nk_BT_e$, where T_e is the electron temperature.
 - c) $u_{xx} = 3nk_BT_e/2$, where T_e is the electron temperature
 - d) $u_{xx} = k_B T_e / 2$, where T_e is the electron temperature.
 - e) $u_{xx} = 3k_B T_e/2$, where T_e is the electron temperature.
- 2) In practice, one commonly extends the near-equilibrium drift-diffusion equation to high-fields by replacing the mobility and diffusion coefficients by electric field dependent quantities, as in $J_{nx} = nq\mu_n(\mathcal{E})\mathcal{E}_x + qD_n(\mathcal{E})dn/dx$. What assumption is necessary to write the DD equation in this form?
 - a) Parabolic energy bands.
 - b) Non-degenerate carrier statistics.
 - c) The microscopic relaxation time approximation.
 - d) That the energy relaxation time is shorter than the momentum relaxation time.
 - e) That the shape of the distribution, whatever it is, does not vary with position.
- 3) Assume that there is a dominant optical (or intervalley) phonon scattering process that dominates under high electric fields. How does the saturated velocity depend on the optical phonon energy, $\hbar\omega_0$?
- a) $v_{SAT} \propto \hbar \omega_0$.
- b) $v_{SAT} \propto (\hbar \omega_0)^2$.
- c) $v_{SAT} \propto \sqrt{\hbar \omega_0}$.
- d) $v_{SAT} \propto 1/\hbar\omega_0$.
- e) $v_{SAT} \propto 1/\sqrt{\hbar\omega_0}$.

(continued on next page)

- 4) Which of the following statements is true when the drift energy is small compared to the thermal energy?
 - a) $\langle \tau_m \rangle \approx \langle \tau_E \rangle$.
 - b) $\langle \tau_m \rangle >> \langle \tau_E \rangle$.
 - c) $\langle \tau_m \rangle \ll \langle \tau_E \rangle$.
 - d) $\langle au_{\scriptscriptstyle m} \rangle$ and $\langle au_{\scriptscriptstyle E} \rangle$ both increase with increasing energy.
 - e) $\langle au_{\scriptscriptstyle m} \rangle$ and $\langle au_{\scriptscriptstyle E} \rangle$ are independent of energy.
- 5) In the classic description of the velocity vs. electric field characteristic in bulk Si, $v_d = \mu_{n0} \mathcal{E} / \sqrt{1 + \left(\mathcal{E}/\mathcal{E}_{\mathcal{C}}\right)^2} \text{ , approximately what is the magnitude of the critical electric field, } \mathcal{E}_{\mathcal{C}}$?
 - a) $\approx 0.1 \,\mathrm{kV/cm}$.
 - b) $\approx 1 \text{ kV/cm}$.
 - c) $\approx 10 \text{ kV/cm}$.
 - d) $\approx 100 \text{ kV/cm}$.
 - e) $\approx 1000 \text{ kV/cm}$.
- 6) What question do you have about this lecture?

You will NOT need to turn this quiz in