Week 16 Summary: Non-local Transport

Professor Mark Lundstrom
Electrical and Computer Engineering
Purdue University, West Lafayette, IN USA
DLR-103 and EE-334C / 765-494-3515
lundstro at purdue.edu

nanoscale MOSFETs 2009

this is what it's all about...... making transistors smaller and smaller and keeping Moore's Law going

non-local transport

Rapidly varying electric fields lead to "off-equilibrium", "non-local" or "non-stationary" transport effects that cannot be described with (local) field-dependent field dependent transport parameters.

analysis techniques

1) Field-dependent mobility:

$$
J_{n x}=n q \mu_{n}(E) E_{x}+q D_{n}(E) \frac{d n}{d x}
$$

2) energy transport:

$$
J_{n x}=n q \mu_{n}(u) E_{x}+2 \mu_{n}(u) \frac{d(n u)}{d x}
$$

3) Monte Carlo simulation:

rapidly varying electric fields

velocity overshoot

$$
\begin{aligned}
& p_{d x}=\left\langle p_{x}\right\rangle \quad \text { Let's find an equation for the ave. } x \text {-directed momentum. } \\
& \frac{d p_{d x}}{d t}=-q E_{x}-\frac{p_{d x}}{\left\langle\tau_{m}\right\rangle} \quad \text { (ignores diffusion) } \\
& v_{d x}(t)=-\mu_{n} E_{x}\left(1-e^{-t\left\langle\left\langle\tau_{m}\right\rangle\right.}\right)
\end{aligned}
$$

velocity overshoot

But, μ_{n} is not constant: $\mu_{n}\left(T_{e}\right)$

velocity overshoot

$u=\left\langle E-E_{C}\right\rangle \quad$ Let's find an equation for the ave. kinetic energy

$$
\frac{d u}{d t}=-q v_{d x} E_{x}-\frac{\left(u-u_{0}\right)}{\left\langle\tau_{E}\right\rangle} \quad \text { (ignores diffusion) }
$$

$$
u(t)=u_{0}+q\left\langle\tau_{E}\right\rangle \mu_{n} E_{x}^{2}\left(1-e^{-t /\left\langle\tau_{E}\right\rangle}\right)
$$

velocity overshoot

$$
u(t)=u_{0}+q\left\langle\tau_{E}\right\rangle \mu_{n} E_{x}^{2}\left(1-e^{-t\left\langle\left\langle\tau_{E}\right\rangle\right.}\right)
$$

s.s. velocity overshoot in silicon

velocity undershoot

temporal velocity overshoot

Fig. 8.9 Evolution of the distribution function during a velocity overshoot transient.

The average drift velocity and energy are shown in (a), and the evolution of the corresponding distribution function is shown in (b).

The results were obtained by Monte Carlo simulation of electron transport in silicon by E. Constant [8.10].
p. 335 of FCT

Frank, Laux, and Fischetti, IEDM Tech. Dig., p. 553, 1992

outline

1) Velocity overshoot
2) Ballistic $B T E$

BTE in equilibrium

$$
\frac{\partial f}{\partial t}+\vec{v} \bullet \nabla_{r} f+\vec{F}_{e} \bullet \nabla_{p} f=\hat{C} f
$$

$$
\hat{C} f=0 \text { in two cases: }
$$

-equilibrium
-ballistic transport
generic ballistic device

solution for a ballistic device

Steady-state ballistic BTE:

$$
v_{x} \bullet \frac{\partial f\left(x, p_{x}\right)}{\partial x}-q E_{x} \frac{\partial f\left(x, p_{x}\right)}{\partial p_{x}}=0
$$

Solution:

$$
f\left(x, p_{x}\right)=g(E)=g\left[E_{C}(x)+E\left(k_{x}\right)\right]
$$

Boundary conditions:

First-order equation in space --> one boundary condition, but we have two contacts!

boundary conditions

Solution: Apply one-half of the boundary condition to each contact.

boundary conditions for the BTE

Solution: Specify incoming flux.

solution to the s.s. ballistic BTE

$$
\begin{aligned}
& f\left(x, p_{x}\right)=g\left[E_{C}(x)+E\left(k_{x}\right)\right] \\
& f\left(x, p_{x}\right)=\frac{1}{1+e^{\left(E-E_{F}\right) / k_{B} T_{L}}} \quad E_{F 1} \text { or } E_{F 2} ?
\end{aligned}
$$

follow trajectories in phase space

importance of reflection-less contacts

another example

contact 1

"local density of states"

J.-H. Rhew, Zhibin Ren, and Mark Lundstrom, "A Numerical Study of Ballistic Transport in a Nanoscale MOSFET," Solid-State Electronics, 46,1899, 2002.

distribution function

J.-H. Rhew, Zhibin Ren, and Mark Lundstrom, "A Numerical Study of Ballistic Transport in a Nanoscale MOSFET," Solid-State Electronics, 46,1899, 2002.

bound states

Bound states can occur.
They may be difficult (or impossible to fill from the contacts). In practice, they could be filled by scattering.
diffusive transport

$$
f(x, E)=\frac{1}{1+e^{\left[E-F_{n}(x)\right] / k_{B} T_{e}(x)}} \quad D_{1 D}(x, E)=\frac{1}{\pi \hbar} \sqrt{2 m^{*} /\left(E-E_{C}(x)\right)}
$$

outline

1) Velocity overshoot
2) Ballistic $B T E$

Diffusion across a thin base: Fick's Law

importance of boundary conditions

Fick's Law always holds - no matter how small the base!

