Mark Lundstrom 8/13/2013

ECE 656 Homework 1: Week 1

Mark Lundstrom Purdue University

1) Working out Fermi-Dirac integrals just takes some practice. For practice, work out the integral

$$I_{1} = \int_{-\infty}^{\infty} M(E) f_{0}(E) dE$$

where

$$f_0(E) = \frac{1}{1 + e^{(E - E_F)/k_B T}}$$

and

$$M(E) = W \frac{\sqrt{2m^*(E - E_C)}}{\pi\hbar} H(E - E_C)$$

where

 $H(E-E_C)$ is the unit step function.

- 2) For more practice, work out the integral in problem 1) assuming non-degenerate carrier statistics.
- 3) For still more practice, work out this integral:

$$I_2 = \int_{E_C}^{\infty} M(E) \left(-\frac{\partial f_0}{\partial E} \right) dE ,$$

where M(E) is as given in problem 1).

Mark Lundstrom 8/13/2013

ECE 656 Homework 1: Week 1 (continued)

4) It is important to understand when Fermi-Dirac statistics must be used and when non-degenerate (Maxwell-Boltzmann) statistics are good enough. The electron density in 1D is

$$n_L = N_{1D} \mathcal{F}_{-1/2} (\eta_F) \,\text{cm}^{-1}$$
,

where N_{1D} is the 1D effective density of states and $\eta_F = (E_F - E_C)/k_B T$. In 3D,

$$n = N_{3D} \mathcal{F}_{1/2} (\eta_F) \text{ cm}^{-3}$$
.

For Maxwell Boltzmann statistics

$$n_L^{MB} = N_{1D} \exp(\eta_F) \text{ cm}^{-1}$$

$$n^{MB} = N_{3D} \exp(\eta_F) \text{ cm}^{-3}.$$

Compute the ratios, n_L/n_L^{MB} and n/n_L^{MB} for each of the following cases:

- a) $\eta_F = -10$
- b) $\eta_F = -3$
- c) $\eta_F = 0$
- d) $\eta_F = 3$
- d) $\eta_{F} = 10$

Note that there is a Fermi-Dirac integral calculator available on nanoHUB.org. An iPhone app is also available.

5) Consider GaAs at room temperature doped such that $n = 10^{19}$ cm⁻³. The electron density is related to the position of the Fermi level according to

$$n = N_C \mathcal{F}_{1/2} (\eta_F) \text{ cm}^{-3}$$
,
where
 $N_C = 4.21 \times 10^{17} \text{ cm}^{-3}$.

Determine the position of the Fermi level relative to the bottom of the conduction band, $\,E_{\scriptscriptstyle C}\,.$

- a) Assuming Maxwell-Boltzmann carrier statistics
- b) NOT assuming Maxwell-Boltzmann carrier statistics