Quiz Answers: Week 1 ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2013

Lecture 2 Quiz:

- 1) Which bandstructure below best describes graphene?
 - a) $E = E_C + \hbar^2 k^2 / (2m_n^*)$
 - b) $E = E_V \hbar^2 k^2 / (2m_p^*)$
 - c) $E = \hbar v_{F} k$
 - **d)** $E = \pm \hbar v_F k$
 - e) $E = \pm \hbar v_F k^2$
- 2) What is the "crystal momentum" of an electron?
 - a) $\vec{p} = m_0 \vec{v}$
 - b) $\vec{p} = m_{,\nu}^* \vec{v}$
 - c) $\vec{p} = \left(m_n^* + m_p^*\right) \vec{v}$
 - **d)** $\vec{p} = \hbar \vec{k}$
 - e) $\vec{p} = \hbar^2 k^2 \vec{k}$
- 3) What is the quantity, $\psi(\vec{r}) = u(\vec{r})e^{i\vec{k}\cdot\vec{r}}$, called?
 - a) a plane wave electron wavefunction
 - b) the envelope function
 - c) an atomic orbital
 - d) a Wannier function
 - e) a Bloch wave
- 4) Consider a 2D semiconductor sheet in the x-y plane. The top surface is at z = 0 and the bottom at z = t. What is the wavefunction of the **second** subband? (Assume infinite confining potentials on the top and bottom).
 - a) $\psi(\vec{r}) = \sin(\pi z/t)e^{i2k_x x} \times e^{i2k_y y}$
 - b) $\psi(\vec{r}) = \cos(2\pi z/t)e^{ik_x x} \times e^{ik_y y}$
 - c) $\psi(\vec{r}) = \sin(2\pi z/t)e^{ik_x x} \times e^{ik_y y}$
 - d) $\psi(\vec{r}) = \cos(\pi z / t)e^{ik_x x} \times e^{ik_y y}$
 - e) $\psi(\vec{r}) = \cos(2\pi z/t)e^{ik_x x} \times e^{ik_y y}$

- 5) What is a "quasi-electric field" for electrons?
 - a) A quantity that exerts a force on electrons due to variations in electron affinity
 - b) A quantity that exerts a force on electrons due to variations in bandgap
 - c) A quantity that exerts a force on electrons due to variations in effective mass
 - d) A quantity that exerts a force on electrons due to variations in the density of states
 - e) A quantity that exerts a force on electrons and that is obtained by solving the Poisson equation.

Lecture 3 Quiz:

- 1) Which of the following is true about the density of states in *k*-space?
 - a) It depends on the dimensionality of the semiconductor.
 - b) States are spaced uniformly in k-space.
 - c) It is independent of the semiconductor's bandstructure.
 - d) All of the above.
 - e) None of the above.
- 2) Which of the following is true about the density of states in energy space?
 - a) It depends on the dimensionality of the semiconductor.
 - b) States are spaced uniformly in energy space.
 - c) It is independent of the semiconductor's bandstructure.
 - d) All of the above.
 - e) None of the above.
- 3) What is the quantity, $\frac{\sum\limits_{k_x>0,k_y,k_z}\upsilon_x f_0\big(E_k\big)}{\sum\limits_{k_x>0,k_y,k_z}f_0\big(E_k\big)} ?$
 - a) Zero.
 - b) The average, thermal equilibrium electron velocity
 - c) The average, thermal equilibrium velocity of electrons with a +x-directed velocity
 - d) The rms thermal velocity
 - e) The Richardson thermal velocity

- 4) What is the difference between a "script F" Fermi-Dirac integral, $\mathcal{F}_{j}(\eta_{\scriptscriptstyle F})$ and a "roman F" Fermi-Dirac integral, $F_{j}(\eta_{\scriptscriptstyle F})$?
 - a) There is no difference they are the same quantity.
 - b) $\mathcal{F}_{j}(\eta_{F}) = dF_{j}/d\eta_{F}$
 - c) $F_j(\eta_F) = d\mathcal{F}_j/d\eta_F$
 - **d)** $F_j(\eta_F) = \Gamma(j+1)\mathcal{F}_j(\eta_F)$
 - e) $F_j(\overline{\eta_F}) = \overline{\mathcal{F}_j(\eta_F)}$ for $\overline{\eta_F} \ll 0$
- 5) Which of the following is true when $\eta_{\scriptscriptstyle F}>>0$?
 - a) $\mathcal{F}_{j}(\eta_{F}) \rightarrow \exp(\eta_{F})$
 - b) $\mathcal{F}_{j}(\eta_{F}) > \exp(\eta_{F})$
 - c) $\mathcal{F}_{i}(\eta_{F}) < \exp(\eta_{F})$
 - d) $\mathcal{F}_{j}(\eta_{F}) \rightarrow \exp(\overline{\eta_{F}^{j}})$
 - e) $\mathcal{F}_i(\eta_F) \rightarrow 1$.