Week 1 Lecture 2 Quiz: Bandstructure Review and Heterostructures

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom
Purdue University, Fall 2013

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

1) Which bandstructure below best describes graphene?

a)
$$E = E_C + \hbar^2 k^2 / (2m_n^*)$$

b)
$$E = E_V - \hbar^2 k^2 / (2m_p^*)$$

c)
$$E = \hbar v_F k$$

d)
$$E = \pm \hbar v_{\scriptscriptstyle F} k$$

e)
$$E = \pm \hbar v_F k^2$$

2) What is the "crystal momentum" of an electron?

a)
$$\vec{p} = m_0 \vec{v}$$

b)
$$\vec{p} = m_n^* \vec{v}$$

c)
$$\vec{p} = \left(m_n^* + m_p^*\right)\vec{v}$$

d)
$$\vec{p} = \hbar \vec{k}$$

e)
$$\vec{p} = \hbar^2 k^2 \vec{k}$$

- 3) What is the quantity, $\psi(\vec{r}) = u(\vec{r})e^{i\vec{k}\cdot\vec{r}}$, called?
 - a) a plane wave electron wavefunction
 - b) the envelope function
 - c) an atomic orbital
 - d) a Wannier function
 - e) a Bloch wave

continued on next page

4) Consider a 2D semiconductor sheet in the x-y plane. The top surface is at z = 0 and the bottom at z = t. What is the wavefunction of the **second** subband? (Assume infinite confining potentials on the top and bottom).

a)
$$\psi(\vec{r}) = \sin(\pi z/t)e^{i2k_x x} \times e^{i2k_y y}$$

b)
$$\psi(\vec{r}) = \cos(2\pi z/t)e^{ik_x x} \times e^{ik_y y}$$

c)
$$\psi(\vec{r}) = \sin(2\pi z/t)e^{ik_x x} \times e^{ik_y y}$$

d)
$$\psi(\vec{r}) = \cos(\pi z / t) e^{ik_x x} \times e^{ik_y y}$$

e)
$$\psi(\vec{r}) = \cos(2\pi z/t)e^{ik_x x} \times e^{ik_y y}$$

- 5) What is a "quasi-electric field" for electrons?
 - a) A quantity that exerts a force on electrons due to variations in electron affinity
 - b) A quantity that exerts a force on electrons due to variations in bandgap
 - c) A quantity that exerts a force on electrons due to variations in effective mass
 - d) A quantity that exerts a force on electrons due to variations in the density of states
 - e) A quantity that exerts a force on electrons and that is obtained by solving the Poisson equation.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday.