Week 1 Lecture 3 Quiz: Sums in k-space and integrals in energy space

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2013

Student's name:	

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) Which of the following is true about the density of states in *k*-space?
 - a) It depends on the dimensionality of the semiconductor.
 - b) States are spaced uniformly in k-space.
 - c) It is independent of the semiconductor's bandstructure.
 - d) All of the above.
 - e) None of the above.
- 2) Which of the following is true about the density of states in energy space?
 - a) It depends on the dimensionality of the semiconductor.
 - b) States are spaced uniformly in energy space.
 - c) It is independent of the semiconductor's bandstructure.
 - d) All of the above.
 - e) None of the above.

3) What is the quantity,
$$\frac{\displaystyle\sum_{k_x>0,k_y,k_z}\upsilon_x f_0\big(E_k\big)}{\displaystyle\sum_{k_x>0,k_y,k_z}f_0\big(E_k\big)} ?$$

- a) Zero.
- b) The average, thermal equilibrium electron velocity
- c) The average, thermal equilibrium velocity of electrons with a +x-directed velocity
- d) The rms thermal velocity
- e) The Richardson thermal velocity

continued on next page

- 4) What is the difference between a "script F" Fermi-Dirac integral, $\mathcal{F}_{j}(\eta_{F})$ and a "roman F" Fermi-Dirac integral, $F_{j}(\eta_{F})$?
 - a) There is no difference they are the same quantity.
 - b) $\mathcal{F}_i(\eta_F) = dF_i/d\eta_F$
 - c) $F_j(\eta_F) = d\mathcal{F}_j/d\eta_F$
 - d) $F_{j}(\eta_{F}) = \Gamma(j+1)\mathcal{F}_{j}(\eta_{F})$
 - e) $F_i(\eta_F) = \mathcal{F}_i(\eta_F)$ for $\eta_F \ll 0$
- 5) Which of the following is true when $\eta_{\scriptscriptstyle F}>>0$?
 - a) $\mathcal{F}_{j}(\eta_{F}) \rightarrow \exp(\eta_{F})$
 - b) $\mathcal{F}_i(\eta_F) > \exp(\eta_F)$
 - c) $\mathcal{F}_{j}(\eta_{F}) < \exp(\eta_{F})$
 - d) $\mathcal{F}_{j}(\eta_{F}) \rightarrow \exp(\eta_{F}^{j})$
 - e) $\mathcal{F}_i(\eta_F) \rightarrow 1$.
- 6) What question do you have about this lecture?