Week 2 Lecture 4 Quiz: Density-of-States

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom
Purdue University, Fall 2013
(revised 8/30/13)

Charles and a second		
Student's name:		

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) The 1D DOS is given by $D_{1D} = 2/(\pi\hbar v)$. What are the units of this expression?
 - a) Joules-1.
 - b) Joules-2.
 - c) Joules-1 m-1.
 - d) Joules-1 m-2.
 - e) Joules-2 m-1.
- 2) The 1D DOS is given by: $D_{1D} = 2/(\pi\hbar v)$. What bandstructure does this apply to?
 - a) Parabolic.
 - b) Spherical.
 - c) Ellipsoidal.
 - d) Linear.
 - e) Any bandstructure.
- 3) A common way to describe a non-parabolic conduction band is $E(k) \Big[1 + \alpha E(k) \Big] = \hbar^2 k^2 / \Big[2m^*(0) \Big]$. What does non-parabolicity ($\alpha > 0$) do to the density of state in k-space and energy space?
 - a) Increases DOS(k) and increases DOS(E).
 - b) Increases DOS(k) and decreases DOS(E).
 - c) Decreases DOS(k) and increases DOS(E).
 - d) Decreases DOS(k) and decreases DOS(E).
 - e) Leaves DOS(k) unchanged and increases DOS(E).

continued on next page

- 4) What is the quantity, $(1/A)\sum_{k}\delta(E-E_{k})$?
 - a) The number of electrons.
 - b) The density of electrons per cm².
 - c) The density-of-states in k-space.
 - d) The density-of-states in energy-space.
 - e) Unity.
- 5) Very often, it suffices to know the DOS only near the bottom of the conduction band and the top of the valence band. Why?
 - a) Because the DOS at higher (or lower) energies can be obtained by extrapolation of the DOS near the band edges.
 - b) Because the Fermi function ensures that states well above E_C are always empty and that states well below E_V are always full.
 - c) Because the bands become parabolic well above EC and well below EV.
 - d) All of the above.
 - e) None of the above.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday.