Week 2 Lecture 5 Quiz: Scattering and Fermi's Golden Rule

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom
Purdue University, Fall 2013
(revised 8/30/13)

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) Which of the following is generally true of the characteristic times? (Scattering time, τ , momentum relaxation time, $\tau_{_m}$, and energy relaxation time, $\tau_{_E}$.)
 - a) $\tau > \tau_m > \tau_E$.
 - b) $\tau > \tau_m < \tau_E$.
 - c) $\tau < \tau_m > \tau_E$.
 - d) $\tau < \tau_m < \tau_E$.
 - e) $\tau \approx \tau_m \approx \tau_E$.
- 2) Which of the following assumptions does Fermi's Golden Rule make?
 - a) Elastic scattering and infrequent scattering.
 - b) Inelastic scattering and infrequent scattering.
 - c) Weak scattering and infrequent scattering.
 - d) Time independent scattering and weak scattering.
 - e) Time dependent scattering and weak scattering.
- 3) When we write $\vec{p}' = \vec{p} + \hbar \vec{q}$, what are \vec{p}' and \vec{q} ?
 - a) The quantity, \vec{p}' , is the final momentum of the electron and \vec{q} is a Fourier component of the scattering potential.
 - b) The quantity, \vec{p}' , is the final momentum of the electron and \vec{q} is the momentum of the scattering potential.
 - c) The quantity, \vec{p}' , is the final crystal momentum of the electron and \vec{q} is a Fourier component of the scattering potential.
 - d) The quantity, \vec{p}' , is the final energy of the electron and \vec{q} is a Fourier component of the scattering potential.
 - e) The quantity, \vec{p}' , is the final crystal momentum of the electron and \vec{q} is the initial momentum.

continued on next page

- 4) For isotropic scattering, how is the scattering rate related to the density-of-states? (A subscript, "I" refers to the initial state and a subscript, "f" to the final state.)
 - a) $\tau(E_i) \propto D(E_i)$.
 - b) $\tau(E_i) \propto D(E_f)$.
 - c) $1/\tau(E_i) \propto D(E_i)$.
 - d) $1/\tau(E_i) \propto D(E_f)$.
 - e) $1/\tau(E_i) \propto D(E_i + E_f)$.
- 5) If the transition rate, $S(\vec{p}, \vec{p}')$, has a term, $\delta(E' E \mp \hbar \omega)$, which of the following is true $(\hbar \omega > 0)$?
 - a) The scattering is isotropic and elastic.
 - b) The scattering is isotropic and inelastic.
 - c) The scattering is anisotropic and inelastic.
 - d) The scattering is inelastic.
 - e) The scattering is anisotropic.
- 6) What question do you have about this lecture?