Quiz Answers: Week 4 ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom
Purdue University, Fall 2013
(Revised 9/22/13)

Lecture 8 Quiz:

- 1) Compare the typical acoustic phonon (sound) velocity, v_s , to the average thermal velocity of electrons, v_h . Which of the following is true?
 - a) $v_S \approx v_{th}$.
 - b) $v_S < v_{th}$.
 - c) $v_S \ll v_{th}$.
 - d) $v_S > v_{th}$.
 - e) $v_S \gg v_{th}$.
- 2) Comparing optical and acoustic phonons near the center of the Brillouin zone, which of the following is true?
 - a) Optical phonon velocity **much less** than acoustic phonon velocity and optical phonon energy **much less** than acoustic phonon energy.
 - b) Optical phonon velocity much less than acoustic phonon velocity and optical phonon energy much greater than acoustic phonon energy.
 - c) Optical phonon velocity **much greater** than acoustic phonon velocity and optical phonon energy **much less** than acoustic phonon energy.
 - d) Optical phonon velocity **much greater** than acoustic phonon velocity and optical phonon energy **much greater** than acoustic phonon energy..
 - e) Optical phonon velocity **roughly equal** to acoustic phonon velocity and optical phonon energy **roughly equal** to acoustic phonon energy.
- 3) Which phonons are most responsible for **intravalley** scattering?
 - a) Longitudinal modes near the zone center.
 - b) Transverse modes near the zone center.
 - c) Longitudinal modes near the zone boundary.
 - d) Transverse modes near the zone boundary. $\,$
 - e) Both longitudinal and transverse modes near the zone center.

continued on next page

- 4) What is "deformation potential" scattering?
 - a) Scattering by acoustic phonons that is due to the change in bandgap (or band edge) due to a change in lattice spacing.
 - b) Scattering by optical phonons that is due to the change in bandgap (or band edge) due to a change in lattice spacing.
 - c) Scattering by either acoustic or optical phonons that is due to the change in bandgap (or band edge) due to a change in lattice spacing.
 - d) Scattering by defects in the crystal.
 - e) Scattering by an electrostatic dipole in the crystal.

.

- 5) Which of the following scattering mechanisms occur in GaAs but not in Si?
 - a) Acoustic deformation potential scattering.
 - b) Optical deformation potential scattering.
 - c) Ionized impurity scattering.
 - d) Polar optical phonon scattering.
 - e) None of the above.

Lecture 9 Quiz:

- 1) How does the acoustic phonon (sound) velocity of a material, v_s , depend on the density (kg/m³) of the material?
 - a) The sound velocity is proportional to the square root of the density.
 - b) The sound velocity is proportional to one over the square root of the density.
 - c) The sound velocity is proportional to the density.
 - d) The sound velocity is proportional to one over the density..
 - e) The sound velocity is independent of the density.
- 2) If the change in momentum from the initial state for which the magnitude of crystal momentum is $p = \hbar k$ to the scattered state with $p' = \hbar k'$ is $\hbar \beta$, what type of scattering does the relation $0 < \hbar \beta < 2p$ imply?
 - a) Elastic scattering.
 - b) Inelastic scattering.
 - c) Isotropic scattering.
 - d) Anisotropic scattering.
 - e) Inelastic and anisotropic scattering.

continued on next page

- 3) Why is it that optical phonon scattering requires the initial kinetic energy to be greater than the optical phonon energy?
 - a) So that phonon absorption does not occur.
 - b) So that that phonon absorption is greater than phonon emission.
 - c) So that there are final states to scatter to.
 - d) So that that stimulated phonon emission equals spontaneous phonon emission.
 - e) None of the above.
- 4) In the expression for the transition rate,

$$S(\vec{p}, \vec{p}') = \frac{2\pi}{\hbar} |K_{\beta}|^2 |A_{\beta}|^2 \delta_{\vec{p}', \vec{p} \pm \hbar \vec{\beta}} \delta(E' - E \mp \hbar \omega)$$
 what does $|A_{\beta}|^2$ represent?

- a) The electron-phonon coupling constant.
- b) The matrix element (magnitude squared) for scattering.
- c) The magnitude squared of the overlap integral.
- d) The magnitude squared of the lattice vibration.
- e) The scattering rate.
- 5) When we write $\left|A_{\beta}\right|^2 \to \frac{\hbar}{2\rho\Omega\omega} \left(N_{\omega} + 1/2 \mp 1/2\right)$ what are we doing?
 - a) Changing a classical expression to a quantum mechanical expression.
 - b) Properly accounting for stimulated absorption.
 - c) Properly accounting for stimulated emission.
 - d) Properly accounting for spontaneous emission.
 - e) All of the above.