Week 3 Lecture 9 Quiz: Phonon Scattering: Part II

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom
Purdue University, Fall 2013
(Revised 9/13/13)

Student's name:	

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) How does the acoustic phonon (sound) velocity of a material, v_s , depend on the density (kg/m³) of the material?
 - a) The sound velocity is proportional to the square root of the density.
 - b) The sound velocity is proportional to one over the square root of the density.
 - c) The sound velocity is proportional to the density.
 - d) The sound velocity is proportional to one over the density..
 - e) The sound velocity is independent of the density.
- 2) If the change in momentum from the initial state for which the magnitude of crystal momentum is $p = \hbar k$ to the scattered state with $p' = \hbar k'$ is $\hbar \beta$, what type of scattering does the relation $0 < \hbar \beta < 2p$ imply?
 - a) Elastic scattering.
 - b) Inelastic scattering.
 - c) Isotropic scattering.
 - d) Anisotropic scattering.
 - e) Inelastic and anisotropic scattering.
- 3) Why is it that optical phonon scattering requires the initial kinetic energy to be greater than the optical phonon energy?
 - a) So that phonon absorption does not occur.
 - b) So that that phonon absorption is greater than phonon emission.
 - c) So that there are final states to scatter to.
 - d) So that that stimulated phonon emission equals spontaneous phonon emission.
 - e) None of the above.

continued on next page

4) In the expression for the transition rate,

$$S(\vec{p}, \vec{p}') = \frac{2\pi}{\hbar} |K_{\beta}|^2 |A_{\beta}|^2 \delta_{\vec{p}', \vec{p} \pm \hbar \vec{\beta}} \delta(E' - E \mp \hbar \omega)$$
what does $|A_{\beta}|^2$ represent?

- a) The electron-phonon coupling constant.
- b) The matrix element (magnitude squared) for scattering.
- c) The magnitude squared of the overlap integral.
- d) The magnitude squared of the lattice vibration.
- e) The scattering rate.
- 5) When we write $\left|A_{\beta}\right|^2 \to \frac{\hbar}{2\rho\Omega\omega} \left(N_{\omega} + 1/2 \mp 1/2\right)$ what are we doing?
 - a) Changing a classical expression to a quantum mechanical expression.
 - b) Properly accounting for stimulated absorption.
 - c) Properly accounting for stimulated emission.
 - d) Properly accounting for spontaneous emission.
 - e) All of the above.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday.