Week 5 Lecture 10 Quiz: Phonon Scattering: Part III

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2013

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) Emission is proportional to the number of phonons and absorption to the number plus one. Why?
 - a) To account for the zero point energy of the harmonic oscillator.
 - b) To ensure that detailed balance is satisfied in equilibrium.
 - c) To ensure that energetic carriers relax to the lowest energy states.
 - d) Answers (a) and (b) above.
 - e) Answers (b) and (c) above.
- 2) The scattering rate and the momentum relaxation rate are equal for which of the following cases?
 - a) ADP, II, and ODP scattering.
 - b) ADP, ODP, and POP scattering.
 - c) POP, IV, ADP and ODP scattering.
 - d) ADP, ODP, IV, and POP scattering.
 - e) ADP, ODP, and IV scattering.
- 3) Which of the following scattering mechanisms favor small angle scattering?
 - a) ADP and II.
 - b) ODP and II.
 - c) IV and II.
 - d) POP and II.
 - e) II.

continued on next page

4)	Electron-electron scattering is usually ignored when analyzing semiconductor devices.
	How is this justified?

- a) Because it is typically weak compared to charged impurity and phonon scattering.
- b) Because it conserves the momentum of the electron ensemble.
- c) Because it conserves the energy of the electron ensemble.
- d) Because it conserves the number of electrons.
- e) Because it is just to difficult to compute.
- 5) Consider the II-VI semiconductor, ZnSe. What do you expect the dominant scattering mechanism to be if it is undoped and at room temperature?
 - a) ADP scattering.
 - b) ODP scattering.
 - c) PZ scattering.
 - d) POP scattering.
 - e) IV scattering.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday.