Quiz Answers: Week 6

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2013

Lecture 13 Quiz:

- 1) What are the special properties of a contact in the Landauer model?
 - a) Strong inelastic scattering keeps them near equilibrium.
 - b) Any electron incident upon the contact is completely absorbed (no reflections).
 - c) Each contact is described by its own Fermi level.
 - d) Contacts have a very large number of channels (modes) compared to the device.
 - e) All of the above.
- 2) Which of the follow is true about the Landauer expression for current:

$$I = (2q/h) \int {\gamma \pi D(E)/2} (f_1 - f_2) dE$$

- a) It applies to electrons in the conduction band.
- b) It applies to electrons in the valence band.
- c) It applies to holes in the valence band.
- d) It applies to **both** <u>electrons</u> in the conduction band and <u>holes</u> in the valence band.
- e) It applies to both <u>electrons</u> in the conduction band and <u>electrons</u> in the valence band.
- 3) What are the units of the quantity, $\gamma \pi D(E)/2$?
 - a) Energy
 - b) One over energy
 - c) Ohms
 - d) One over Ohms or Siemens.
 - e) The quantity is unitless.
- 4) What is meant by the term "near-equilibrium" transport?
 - a) The contacts stay very close to equilibrium.
 - b) The Fermi level in the contact is close to its equilibrium value.
 - c) The Fermi levels of the two contacts, f_1 and f_2 , can be replaced by the equilibrium Fermi level.
 - d) The difference in Fermi levels between the two contacts can be replaced by a first order Taylor series expansion of $f_1 f_2$.
 - e) The temperature of the two contacts is the same.

continued on next page

- 5) Consider a small nano-device under bias with a steady-state current flowing. Which of the following is true?
 - a) One contact tries to fill states in the device and the other one tries to empty them.
 - b) Both contacts try to fill states in the device.
 - c) Both contacts try to empty states in the device.
 - d) All of the above.
 - e) None of the above.

Lecture 14 Quiz:

- 1) Mathematically, the number of modes (channels) at energy, *E*, is proportional to what?
- a) The density of states.
- b) The velocity.
- c) The density of states times velocity.
- d) The density of states divided by velocity.
- e) The deBroglie wavelength.
- 2) How is the transmission, T, related to the mean-free-path for backscattering, λ , and the length of the resistor, L?
 - a) $T = e^{-L/\lambda}$.
 - b) $T = e^{+L/\lambda}$.
 - c) $T = \lambda/L$.
 - d) $T = L/\lambda$.
 - $e) \quad T = \lambda / (\lambda + L).$
- 3) For parabolic band semiconductors, M(E) is independent of energy (above the bottom of the conduction band) for which of the following cases?
 - a) 1D
 - b) 2D
 - c) 3D
 - d) 1D and 2D
 - e) 2D and 3D

continued on next page

4) Under what conditions does the Landauer expression for current,

$$I = \frac{2q}{h} \int T(E) M(E) (f_1 - f_2) dE$$
, apply?

- a) Near-equilibrium.
- b) For near-ballistic transport conditions, $L \ll \lambda$.
- c) For diffusive transport conditions, $L \gg \lambda$
- d) Far from equilibrium.
- e) All of the above.
- 5) When should we NOT use the Landauer expression, $I = \frac{2q}{h} \int T(E) M(E) (f_1 f_2) dE$?
 - a) When quantum transport is important.
 - b) When semi-classical transport dominates.
 - c) When the temperatures of the two contacts are different.
 - d) When hole conduction dominates.
 - e) When it is necessary to spatially resolve quantities inside the device.