Week 6 Lecture 14 Quiz: Modes and Transmission

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom
Purdue University, Fall 2013

Student's name:	
bludelle 5 manie.	

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) Mathematically, the number of modes (channels) at energy, *E*, is proportional to what?
 - a) The density of states.
 - b) The velocity.
 - c) The density of states times velocity.
 - d) The density of states divided by velocity.
 - e) The deBroglie wavelength.
- 2) How is the transmission, T, related to the mean-free-path for backscattering, λ , and the length of the resistor, L?
 - a) $T = e^{-L/\lambda}$.
 - b) $T = e^{+L/\lambda}$.
 - c) $T = \lambda/L$.
 - d) $T = L/\lambda$.
 - e) $T = \lambda / (\lambda + L)$.
- 3) For parabolic band semiconductors, M(E) is independent of energy (above the bottom of the conduction band) for which of the following cases?
 - a) 1D
 - b) 2D
 - c) 3D
 - d) 1D and 2D
 - e) 2D and 3D

continued on next page

4) Under what conditions does the Landauer expression for current,

$$I = \frac{2q}{h} \int T(E) M(E) (f_1 - f_2) dE$$
, apply?

- a) Near-equilibrium.
- b) For near-ballistic transport conditions, $L \ll \lambda$.
- c) For diffusive transport conditions, $L \gg \lambda$
- d) Far from equilibrium.
- e) All of the above.
- 5) When should we NOT use the Landauer expression, $I = \frac{2q}{h} \int T(E) M(E) (f_1 f_2) dE$?
 - a) When quantum transport is important.
 - b) When semi-classical transport dominates.
 - c) When the temperatures of the two contacts are different.
 - d) When hole conduction dominates.
 - e) When it is necessary to spatially resolve quantities inside the device.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday.