Mark Lundstrom 9/24/13

ECE 656 Homework (Week 7)

Mark Lundstrom Purdue University

1) In Lecture 15, we derived a current equation for a 2D, n-type conductor and wrote it as $J_n = \sigma_s d(F_n/q)/dx$. Derive the corresponding equation for a p-type semiconductor.

- 2) In Lecture 15, we derived the drift-diffusion equation for a 2D n-type semiconductor with parabolic energy bands. Repeat the derivation for a 3D semiconductor with parabolic energy bands. **Do not** assume Maxwell-Boltzmann statistics.
- 3) In 1D, we write $R_{1D} = \left(1/\sigma_{1D}\right)L$, in 2D $R_{2D} = \left(1/\sigma_{2D}\right)L/W$, and in 3D $R_{3D} = \left(1/\sigma_{3D}\right)L/A$. Assuming a degenerate conductor, begin with $G_{ball} = \frac{2q^2}{h}M(E_F)$ and develop expressions for the 1D, 2D, and 3D "ballistic conductivities."
- 4) When we write the resistance as $R = R_{\text{ball}} \left(1 + L/\lambda_0\right)$, we assume a constant (energy-independent) mean-free-path. What is the corresponding expression for an energy dependent mean-free-path, $\lambda(E)$?

ECE-656 1 Fall 2013