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SOLUTIONS: ECE 656 Homework (Week 7)
Mark Lundstrom
Purdue University
(Revised 10/30/13)

1) In Lecture 15, we derived a current equation for a 2D, n-type conductor and wrote it as
J =0, d(F:I/q)/dx. Derive the corresponding equation for a p-type semiconductor.

Solution:
2
"J E)(f,~ f,)dE
(channels in the valence band are all below E = Ey.)
df, A A
V T\E)= - —
ff[aE]q B2
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2) In Lecture 15, we derived the drift-diffusion equation for a 2D n-type semiconductor
with parabolic energy bands. Repeat the derivation for a 3D semiconductor with
parabolic energy bands. Do not assume Maxwell-Boltzmann statistics.

Solution:
Begin with:
dF

J, =0 ;/ : (i)

X

1 2mkrY”
m

n:chl/z(nF) nF:(Fn_EC)/kBT NCZZ[ 71'7128 ]

Now find the gradient of the electrochemical potential:

dn d dn dF  dE 1
2N .Y 2 e
dx C{an Fi (nF)} dx oFn (nF){ dx  dx }kBT

dh,_ 1 g gpdn dE_ Fu(n) opdn dE
dx NCF—I/Z (nF) dx dx NC}-I/Z(nF)F—I/Z (TIF) dx dx

d(F,/a) _ Fin(ne) k,T 1dn_d(Ec/q)

= —_— (ii)
dx f_l/z(nF) q ndx dx
Insert (ii) in (i)
J =0 —dF"/q =0 —F”z(nF) kB—Tl@HF
nx n dx n F_l/z(nF) q n dx X
k,T
J =0 F +0 Fixl0e) kT 1dn (iii)

! —1/2(nF) q n dx

Now write
GI‘I = nq‘LLn

and use in (iii) to find:
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J, =nqut + MkBT,un dn (iv)
F—I/Z (TIF) dx
Define the diffusion coefficient as
T
Dn — f'l/Z (nF) % kB ‘ltn (V)
F—l/z (nF) q

For a nondegenerate semiconductor, 1, = (Fn - EC)/kBT << 0 and we find

k,T
D =-—u,

g
which is the familiar Einstein relation.

Finally, use (v) in (iv)

J =nqu€ +qD dn
nx n X n dx
D, _ 7:1/2(7717) kB_T
u, F—l/z(nF) q

3) In 1D, we write R, =(1/0,,)L,in2D R,, =(1/o,,)L/W ,andin3D R,, =(1/c,,)L/A.

2
Assuming a degenerate conductor, begin with G, = 2% M(EF) and develop

expressions for the 1D, 2D, and 3D “ballistic conductivities.”

Solution:

2
=Ly (E)=0l~

ball — h ballL
2q2
1D
O ZTMID(EF)L
2q° w
Gy :TWMzD(EF)EGZZf
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2¢°
2D
Opn = 7 M, (EF)L

6 =2, (,) =075, 2

24?
6251 = %M3D(EF)L

So the results are:

2
o) =2iM1D(EF)L

ball
2¢°
020 = Z M,,(E,)L
24°
GSZIZ%M3D(EF)L

To go further, we need to specify M(EF) . Let’s assume parabolic energy bands:

MID(EF): H(EF _EC)

2m'(E,.—E
MZD(EF): (ﬂ; C)H(EF_EC)
M3D(EF):A2ﬁh2 (E,—E.)H(E,.-E,)

As an exercise, you might now want to derive the ballistic mobilities in 1D, 2D, and 3D.

4) When we write the resistance as R=R,_, (1 + L/ /10), we assume a constant (energy-

independent) mean-free-path. What is the corresponding expression for an energy
dependent mean-free-path, l(E) ?

Solution:

Begin with the expression for the conductance:

G:%IT(E)M(E)(—%}ZE
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o= e 5

Jas

R= (222 )I A(E) MEE)[

9y
aE]dE

The corresponding ballistic resistance is:

1

o [
- [2q2]JM(E)[—M)dE

oE

So we can re-write the resistance as:
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Yy (E) AE) L

which depends on the sample length, L. The average inverse apparent mean free path

1S:

app

Summary of final results:

il

eyt -2

Jaz

9,

] I’lapp(E)M(E)(—a—E

Jaz

Bottom line: Because the apparent mean-free-path and average inverse apparent
mean-free-path depend on sample length, L, a plot of R vs. L is not necessarily linear,
when there is a strong energy dependence to the mean-free-path. This effects seems to
be more important for phonons, where the mean-free-paths very strongly with energy,
than for electrons, where the mean-free-paths tend to vary more slowly with energy.
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