Quiz Answers: Week 7 ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2013

Lecture 15 Quiz:

- 1) The electron current equation commonly used in semiconductor physics is written as $J_n = \sigma_n \, d \left(F_n / q \right) / dx$. To derive this from the Landauer approach, what assumptions are needed?
 - a) Near-equilibrium transport.
 - b) Constant temperature.
 - c) A conductor that is many mean-free-paths long.
 - d) Answers a) and c) above
 - e) Answers a) b), and c) above.
- 2) The drift-diffusion equation commonly used in semiconductor physics is written as $J_{nx} = nq\mu_n \mathcal{E}_x + qD_n dn/dx$. What assumption is **NOT needed** to derive this equation from the Landauer approach?
 - a) Near-equilibrium transport.
 - b) Constant temperature.
 - c) A conductor that is many mean-free-paths long.
 - d) Maxwell-Boltzmann statistics.
 - e) Steady-state conductions.
- 3) Which of the following is correct about the conductivity of a 2D metal?

a)
$$\sigma_S = q^2 D_n (E_F) D_{2D} (E_F)$$

b)
$$\sigma_S = q^2 D_{2D} (E_F) \frac{v^2 (E_F) \tau (E_F)}{2}$$

c)
$$\sigma_S = \frac{2q^2}{h} M_{2D}(E_F) \lambda(E_F)$$

d)
$$\sigma_S = n_S q \left(\frac{q \tau(E_F)}{m^*} \right)$$

e) All of the above are correct.

continued on next page

1

- 4) What is the quantity: $\frac{2q}{hn_S}\int \lambda(E)M_{2D}(E)\left(-\frac{\partial f_0}{\partial E}\right)dE$?
 - a) The conductivity of a 2D material.
 - b) The mobility of a 2D material.
 - c) The diffusion coefficient of a 2D material.
 - d) The average mean-free-path of a 2D material.
 - e) The resistivity of a 2D material.
- 5) How can we determine is a long resistor is operating in near-equilibrium conditions?
 - a) The voltage across the resistor must be less that $k_{\scriptscriptstyle R}T/q$.
 - b) The measured current is proportional to the applied voltage.
 - c) The magnitude of the electric field satisfies $\mathcal{E} << (k_{_B}T/q)/\lambda_{_E}$ where $\lambda_{_E}$ is the energy relaxation length.
 - d) a) and b) above.
 - e) a), b), and c) above.

Lectures 16-17 Quiz:

- 1) The expression for the ballistic conductance, $G_{ball} = \frac{2q^2}{h} M(E_F)$ is valid when?
 - a) In the degenerate limit.
 - b) For 1D and 2D conductors.
 - c) For isothermal conditions.
 - d) For ballistic conductors
 - e) All of the above.
- 2) In general, we can write the ballistic conductance as $G_{ball} = \frac{2q^2}{h} \langle M \rangle$. What is $\langle M \rangle$?
 - a) The number of channels.
 - b) The number of channels at the Fermi energy.
 - c) The average number of channel in the Fermi window.
 - d) The number of channels at the bottom of the conduction band.
 - e) The total number of channels in the Fermi window.

continued on next page

- 3) The expression for the resistance, $R = R_{\text{ball}} \left(1 + L/\lambda_0 \right)$ is **not valid** under what conductions?
 - a) In the ballistic limit.
 - b) In the diffusive limit.
 - c) In between the ballistic and diffusive limits
 - d) When the mean-free-path depends on energy
 - e) Under non-degenerate conductions.
- 4) For a ballistic resistor, the power dissipated is $P_D = IV = V^2/R$. Where is this power dissipated?
 - a) Uniformly within the resistor
 - b) Near the two ends of the resistor
 - c) In the contact with the most positive voltage
 - d) In the contact with the most negative voltage
 - e) In the two contacts.
- 5) For a ballistic resistor, with a voltage, V, applied across it, where does the voltage drop?
 - a) Uniformly within the resistor
 - b) Near the two ends of the resistor
 - c) In the contact with the most positive voltage
 - d) In the contact with the most negative voltage
 - e) In the two contacts.