Week 7 Lecture 15 Quiz: Near-Equilibrium Transport in the Bulk

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2013

Student's name:	
otuaciit o manici	

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) The electron current equation commonly used in semiconductor physics is written as $J_n = \sigma_n d(F_n/q)/dx$. To derive this from the Landauer approach, what assumptions are needed?
- a) Near-equilibrium transport.
- b) Constant temperature.
- c) A conductor that is many mean-free-paths long.
- d) Answers a) and c) above
- e) Answers a) b), and c) above.
- 2) The drift-diffusion equation commonly used in semiconductor physics is written as $J_{nx} = nq\mu_n \mathcal{E}_x + qD_n dn/dx$. What assumption is **NOT needed** to derive this equation from the Landauer approach?
- a) Near-equilibrium transport.
- b) Constant temperature.
- c) A conductor that is many mean-free-paths long.
- d) Maxwell-Boltzmann statistics.
- e) Steady-state conductions.

continued on next page

3) Which of the following is correct about the conductivity of a 2D metal?

a)
$$\sigma_S = q^2 D_n(E_F) D_{2D}(E_F)$$

b)
$$\sigma_S = q^2 D_{2D} (E_F) \frac{v^2 (E_F) \tau (E_F)}{2}$$

c)
$$\sigma_S = \frac{2q^2}{h} M_{2D}(E_F) \lambda(E_F)$$

d)
$$\sigma_S = n_S q \left(\frac{q \tau(E_F)}{m^*} \right)$$

- e) All of the above are correct.
- 4) What is the quantity: $\frac{2q}{hn_s}\int \lambda(E)M_{2D}(E)\left(-\frac{\partial f_0}{\partial E}\right)dE$?
 - a) The conductivity of a 2D material.
 - b) The mobility of a 2D material.
 - c) The diffusion coefficient of a 2D material.
 - d) The average mean-free-path of a 2D material.
 - e) The resistivity of a 2D material.
- 5) How can we determine is a long resistor is operating in near-equilibrium conditions?
 - a) The voltage across the resistor must be less that $k_{_B}T/q$.
 - b) The measured current is proportional to the applied voltage.
 - c) The magnitude of the electric field satisfies $\mathcal{E} \ll (k_{\scriptscriptstyle B}T/q)/\lambda_{\scriptscriptstyle E}$ where $\lambda_{\scriptscriptstyle E}$ is the energy relaxation length.
 - d) a) and b) above.
 - e) a), b), and c) above.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday.