Week 7 Lecture 16-L17 Quiz: Resistance: Ballistic to Diffusive

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom
Purdue University, Fall 2013

Student's name: _	
-------------------	--

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) The expression for the ballistic conductance, $G_{ball} = \frac{2q^2}{h} M(E_F)$ is valid when?
 - a) In the degenerate limit.
 - b) For 1D and 2D conductors.
 - c) For isothermal conditions.
 - d) For ballistic conductors.
 - e) All of the above.
- 2) In general, we can write the ballistic conductance as $G_{ball} = \frac{2q^2}{h} \langle M \rangle$. What is $\langle M \rangle$?
 - a) The number of channels.
 - b) The number of channels at the Fermi energy.
 - c) The average number of channel in the Fermi window.
 - d) The number of channels at the bottom of the conduction band.
 - e) The total number of channels in the Fermi window.
- 3) The expression for the resistance, $R = R_{\text{ball}} \left(1 + L/\lambda_0 \right)$ is **not valid** under what conductions?
 - a) In the ballistic limit.
 - b) In the diffusive limit.
 - c) In between the ballistic and diffusive limits.
 - d) When the mean-free-path depends on energy.
 - e) Under non-degenerate conductions.

continued on next page

4)	For a ballistic resistor, the power dissipated is $P_D = IV = V^2 / R$. Where is this power
	dissipated?

- a) Uniformly within the resistor.
- b) Near the two ends of the resistor.
- c) In the contact with the most positive voltage.
- d) In the contact with the most negative voltage.
- e) In the two contacts.
- 5) For a ballistic resistor, with a voltage, *V*, applied across it, where does the voltage drop?
 - a) Uniformly within the resistor.
 - b) Near the two ends of the resistor.
 - c) In the contact with the most positive voltage.
 - d) In the contact with the most negative voltage.
 - e) In the two contacts.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday.