Mark Lundstrom 10/5/13

SOLUTIONS: ECE 656 Homework (Week 8)
Mark Lundstrom
Purdue University

1) The general expression for conductance,

G:Z—;’:jT(E)M(E)[—%JdE,

can be written as
6= 2L (7)) m(E)

In the diffusive limit, for a 3D resistor

2
0. =2 {(A(E))) (M (E) 4) .
Derive the general expressions for <M(E)/A> and for <<7L(E)>> in terms of their

energy-dependent quantities, M(E) and l(E) HINT: Begin at the ballistic limit

and determine M (E ) first.

Solution:
Begin in the ballistic limit, where 7 =1 and we have:

G= TE M(E)[ %]dE: E<M>

Ioh OE h

_ I
<M>—IM(E)[ aEJdE
Note that:
JL_B_E)dE:_Jdfoz_fo(+oo)+fo(—oo)=—0+1=1

SO we can write:
_[M(E)[—andE
<M>: = +oo '
I(—M)dE
I\ 0E
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Mark Lundstrom 10/5/13

ECE 656 Homework (Week 8) (continued)

Equation (i) looks like an average. We interpret it as the average number of
channels in the Fermi window.

Now include the transmission:

G:ZqujT(E)M(E)(—%]dE

7 (E)M(E)| -2 Ja
Go 22 <ME an <M>
so we define:

[T(E)M(E) _9 g
((r(e)- E fj’Ej
| M(E)(—andE
In the diffusive limit:

AE) o,

<<A(E)>>: JLM(E)(—aE]dE

L JM(E)(—%}ZE

Multiple through by L to find

E)M|\E —% dE
ey (-52]

jM(E)[—aagjdE "

Writing (i) and (ii) on a per unit area basis, we find:
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ECE 656 Homework (Week 8) (continued)

2) Begin this problem with the expression for the 2D conductivity:

o, :%J.MQD(E)A(E)(—%}IE

2a) Assume a constant mfp,

ME-E.)=2,

and work out an expression for the 2D mobility in terms of the mfp. Your results
should be valid for any level of carrier degeneracy. Simplify your results for T = 0K
and for non-degenerate conditions.

2b) Assume a “power law” mfp describe by

ME-E)=A[(E-E[k,T,)],

where “r” is a characteristic exponent that describes scattering. Repeat problem 2a)
for this energy-dependent mfp.

Note: for 7= 0 K, only one energy matters, so it is best just to write A(E)and not
use the power law form.
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ECE 656 Homework (Week 8) (continued)
Solution:

Let’s use the result in Lundstrom and Jeong, Appendix, p. 218, eqn. (A.30)

o - 24 A 2m'k,T r(""‘éjﬁ—l/z(nF)

S h " 7mn 2
2a) r =0 energy independent mfp

2 2m’k,T
:2q 1 mk, 1_,(3)7_-1/2(”F)En5q‘un

S h Y mh 2

o

2—61& J2m'k, T F(ﬂ}' (77 )

" iz_qlo 2 kT F(éjf_l/z (T’F): " 717?1 2
ng h h 2 m kBT]—'(n )
Ehz 0 F
11 3F(3j
T V mk,T \2)F , (nF) 3 \/;
= I=-|=—
n Fo(n,) 2) 2
e
U = o mm’ F—I/Z (nF) _ )‘OUT F—l/z (nF)

2k,T Fy(n.)  2(k,T/q) F,(n,)

The result is:

u :()'ovr/z) F—l/z(nF)
" (kT/q) Fi(n,)

For non-degenerate statistics, this simplifies to:

_ (A, /2)

= (kBT/q)
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ECE 656 Homework (Week 8) (continued)

For degenerate statistics, is it best to begin again with:

2 2
o Z%MZD(EF)/I(EF)z ngu,

1 (2v,/7)2, (/1

un:(EF_Ec)/q 2

[21) /7r ]/2

“T(E-E)

2b) energy dependent mfp

Use the result in Lundstrom and Jeong, Appendix, p. 218, eqn. (A.30)

2q° , \2m'k,T
o,==2, ’Zh C(r+3/2)F,..(n,)

Repeating the derivation of part 2a), we find:

95 |2 r(r+3/2
g e )

u, =

Fo(n,)
A /2kB*T I(r+3/2)
U= "N m \/; ﬁ—uz(nF)
” k,T /g Foln)

:(AOUT/Z) T(r+3/2) 7, ,,(n,)
Wi TR A
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ECE 656 Homework (Week 8) (continued)

For non-degenerate statistics, this simplifies to:

(A0, /2)T(r+3/2)

k,T/q T(3/2)

M, =

For degenerate statistics:

[21) /7r ]/2

SR

3) In 3D, we relate the current density to the electric field by
Ex = p3DJx 4

where Z _ is the electric field in V/m and J_ is the current density in A/m2. Write the
corresponding equations in 1D and 2D and determine the units of p,,, p,, = p,, and

p3D :
Solution:

For 1D, there is no current density, just current, so we have:

Ex = plDIx

in terms of units, we can write:
V/m=()A
To make the units match, we must have: () =V/(A-m) = Ohms/m

For 2D, the current density is in A/m:

Ex = pZDJx

in terms of units, we can write:
V/m=()A/m

To make the units match, we must have: () =V/(A) = Ohms
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ECE 656 Homework (Week 8) (continued)

For 3D, the current density is in A/m?:
£,.=pyp,

in terms of units, we can write:
V/m=()A/m?2

To make the units match, we must have: () =V-m/(A) = Ohms-m

4)  Assume an n-channel MOSFET at T= 300 K with n, =10" cm™. Assume that only the
lowest subband is occupied and compute <M2D>, the average number of modes in the
Fermi window per micrometer of channel width.

Solution:

The first step is to determine the location of the Fermi level.

"k, T
”s:szﬁ)(nF):gvn;Tiln(l"'enF) (i)

For the first unprimed subband,

m =m,=0.19m,
g =2

mk,T 5 0-19x9.11x 107" x1.38 107 x 300

N =g =
w A 3.14x(1.055x107)’

N,,=4.1x10" cm~
ng=N,, ln(1+enp)% n, = ln(enS/Nzn _1) — ln(610/4.1 _1)
N, =2.35

From slide 23 of Lecture 7, Fall 2011:

«[2m*kBTL \/—
<M213>:gv7 u F—1/2(nF)

2
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ECE 656 Homework (Week 8) (continued)

Putting in numbers:

_2\/2><O.19><9.11><IO’31 x1.38x107 x 300 v3.14

<MZD> 3.14%1.055x107* F‘W(MS)

-1/2

(M,,)=2.025x10"x 7 (2.35)=2.025x10" x1.607 =3.25x10° m"

(M,,)=325um"

Consider an L = 22 nm technology with W =L = 0.022 micrometers. We would have,
<M2D> =7, a fairly small number.

5) According to equ. (6.9) on p. 182 of Advanced Semiconductor Fundamentals, 2" Ed.,
(R.F. Pierret, 2003) the mobility of electrons in Si for N, =10"* cm™at 7 =300K is

1268 cm’/V-s and at N, =10” cm” itis 95cm’/V-s. Determine the average mean-
free-path, ((A)) in both cases.

Solution:

The assumption is that we are dealing with a 3D semiconductor. The conductivity is
written as:

6:27q2/10<M3D/A> (i)
k
(M, 4)= 8,5, (n,) (i)

What effective mass do we use in this expression?
Not the density of state effective mass
Not the conductivity effective mass
We should use the “distribution of modes” effective mass (See Jeong, et al., ]. Appl.
Phys., 107,023707,2010).

gm =m,, =2m +4Jmm, =2.04m, (iii)
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ECE 656 Homework (Week 8) (continued)

Before we can use (ii), however, we must determine 7,..

n=N.F,, (TIF)
N.=1.03x10"” cm™ (Pierret, Adv. Semiconductor Fundamentals, p. 113)

Note that the effective DOS makes use of the density-of-states effective mass:

3
3 2 _
Mpyos = 6 (m(ml ) = 1.O6m0 ’

which is quite different from the distribution of modes effective mass.

So now we have a procedure:

1) Given the carrier density, solve for 1,

ny=NcFy, (nF)
2) Next, solve for the average number of channels in the Fermi window:

m kT

<M3D/A> = %F{)(TIF)
4) Then find the conductivity from the given data:

0= an'Lln
5) Finally, solve for the mean-free-path:

(o) 1

A
’ (Zqz/h) <M3D/A>
Casei): n,=N,=10" cm” (non-degenerate)
N, =In(n,/N.)=-115

(M,,]4)= %ﬂ(—llﬁ) =1.07x10° cm”

o =ngu =10"x1.6x10™"" x1268=2.03x107 S/cm
o =nqi =10"x1.6x10"" x 1268 =2.03% 10"

] =263

0 1 _ 1 _
AO_(Zqz/h)<M3D/A>_263X1.07><108 2onm
A, =25nm
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ECE 656 Homework (Week 8) (continued)
Caseii): n,=N,=10" cm” (degenerate)

ny=N.F.,(n,)—>10* =1.03x10" 7 ,(n,) > n, =534
m;;OMkBT 13 2 13 .2
<M3D/A>:WFO(5.34):1.1><10 7o (5.34)em™ =5.87x10" cm

O =nqu, = 10 x1.6x107"° x95=1.52x10’

=1.97x10’

(24°/1)

_ o

1 1
b= g ) 01, 4)

587x10°

=1.97x10" x 3.4 nm

A,=3.4nm

6) We have asserted that A =2k,T, for a non-degenerate, 3D semiconductor with

parabolic energy bands and an energy-independent mean-free-path for
backscattering. This means that the average energy at which current flows is 2k, T,

above the bottom of the conduction band. Repeat the calculation, but this time
assume power law scattering,

M(E)=A[(E- £ )k,
Whatis A in this case?

Solution:

ECE-656 10 Fall 2013



Mark Lundstrom

ECE 656 Homework (Week 8) (continued)

J(E—Ec)zqz(E)lo[(E—EC)/kBTT(—afO]dE

A\ hooA OE
n jz—}qj@zo[(E—Ec)/kBT]’(—%jdE

Most constants cancel (remember that M o< (E -FE C) ) and we find

j(E—EC)z[(E—EC)/kBT]r[—ggJdE

A =
n , a
J(5- £ (- ) ] - Jas
n=(E-E.)/k,T n,=(E.—E.)/k,T
[ 9
A _.[(kBT)znz (—a—];fjkBTdn
" .0
[k, (—a—gjkBTdn
o [ 2
" fydn
A _kBTa"FI " =k, Tx 2
d [ 1 em
anFIn Jydn
i Jnﬂfodnzai r(3+)F, (1,)=T(3+7) 7, (1)
F F
dem = J‘nmfoc;,’n:a?a7 1"(2+r);7--H (T]F):F(2+V)F(17F)
F F
Putting this together:
a 2+
- d
A =k TanFJ.n fO n_k wa_k F(3+r)7:l+ (T’F)
? 3187 Jn“’fodn £ dem ° F(2+r)F(nF)
F
L TBFL )
n B
r(2+r)7,(n,)
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ECE 656 Homework (Week 8) (continued)

For nondegenerate statistics, Fermi-Dirac integrals become exponentials and we find:

SN —

r(3+r
A =k,T
F(2+r

S—"

For r=0this gives A =2k, T .

r(s)

For ionized impurity scattering, » =2 and we find A = kBTm =4k,T.

7) Repeat prob. 6) in the strongly degenerate limit, and use the result to explain why the
Seebeck coefficient of a metal approaches zero.

Solution:

Let’s begin at:
2 f[df,
J(E-E.) [(E-E.)/k,T] (—andE

n [(E-E)[(E-E.)/k,T] —%}dlz o

-=(E,-E)
(E,~E(E,~E) k] " °
The Seebeck coefficient is
5 - _% (ii)

E =E.+A =E.+E,-E.=E,

E,=E,. Current flows at the Fermi level, so by (ii), S, =0.
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ECE 656 Homework (Week 8) (continued)

8) In Lecture 10, Fall 2011, we worked out the approximate values of the four
thermoelectric transport coefficients for lightly doped n-type Ge. For practical TE
devices, the material would be doped so that £, = E.. Work out the four
thermoelectric transport coefficients for n-type Ge doped at N, =10" ¢cm™. You may

assume that T = 300 K, that the dopants are fully ionized, and that the mean-free-path
for backscattering, A, is independent of energy.

Use the material parameters presented in Lecture 10, Fall 2011, but use a mobility of
i, =330 cm’/V-s (from http://www.ioffe.ru/SVA/NSM/Semicond/Ge/Figs/232.gif .
You may assume non-degenerate carrier statistics (but realize that this assumption
may not well-justified for £, = E_., which is the case here, so we will only obtain

estimates). Work out approximate, numerical values for lo, p,S, m,and k.

Solution:

Compute the thermal velocity:

2k.T
v, = E_ =1.55x10" cm/s
r Tm

where we have used the conductivity effective mass of Ge: m" = 0.12m, .

1 1( 1 2
* E o * + *
m, 3\ m , m

Now use the diffusion coefficient to determine the mean-free-path.

k,T A
D =—5—y =8.6cm’/s D =—"Lcm?’/s
n q n n 2
2D
A, =—==11.1x10"cm A,=11.1nm
(V)

T

p=1/(ngu,)=1/(10" x1.6x10™" x330)=0.0019 Q-em |p=0.0019 Q-cm

()t

(E,—E,)/k,T =~In(N_/n,) N.=1.04x10" cm*
(E.-E,)/k,T =1n((1.04x10")/10”) =3.9x107 5 ~2

S= (k—BHMMH} ~—86 uV/K x{3.92x107 +2} =-175uV/K
-q kT

|S=—-175uVIK|
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ECE 656 Homework (Week 8) (continued)

n=TS=-005V

k,=ToL=TLlp L=2(k,/q)

(We are using the factor of 2 because we assume nondegenerate carrier statistics.)
Tx2(k,/q)
- p

K =0.24 W/m-K

e

K, =024 W/m-K

9) Perhaps we should use Fermi-Dirac statistics for thermoelectric calculations when
E. = E_ . Repeat problem 8), but this time use Fermi-Dirac statistics to determine the

approximate values of lo, p,S, m,and K,. You might find it useful to know that

_2q2 ng*kBT —_ kg 271—1(771?)_
Osp = h /10[ i’ )ﬂ(nF) and §= [q]{ﬁ(m) nF}

Solution:
The conductivity does not change from prob. 3):

o,,=1/p=1/0.0019=526 S/cm

24° kT
From: o, = %/10 [ ’Zn'gz j]-'o (nF) , we can solve for the MFP in terms of the

conductivity:

A = Osp

' (24 m'k,T
( h ](gV 2ah’ j’t"(nF)

To proceed, we must find 7, using:

n,=10"=N_7,,(n,)=1.04x10"F, ,(n,)
—1 1019 -1
=\ Toaor |~ P (0.962)=0.297

(computed with the iPhone app or with the nanoHUB tool:
http://nanohub.org/resources/11396)
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ECE 656 Homework (Week 8) (continued)

1o T _ 5.26x10* S/m —03x107m
"2\ kT (7.71x10°)(6.37x10") £,(0.297)
A Era i\

where we used the “distribution of modes effective mass,” m" = 1.18m,. Fora
discussion of distribution of modes (DOM) effective mass, see:

Changwook Jeong, Raseong Kim, Mathieu Luisier, Supriyo Datta, and Mark
Lundstrom, “On Landauer vs. Boltzmann and Full Band vs. Effective Mass
Evaluation of Thermoelectric Transport Coefficients,” J. Appl. Phys., Vol. 107,
023707, 2010.

A,=13nm a bit longer than for MB statistics

p=0.0019 Q-cm same as before

ks \| 27(n;) o [27,(0297) }
S=—- L {—————=— =-86%X107{ ———2%—-0.297 ; =—-186uV/K
[qj{ﬁ)(m) "‘”} : {5(0-297) g

S=-186 uV/K

r=TS=-0.06V

n,2

k,=ToL=TL/p [z?(klg/q)2

(We are using the fully degenerate Lorenz number, for simplicity.)

2
T><ﬂ:?(kl9/q)2
K,= p =0.40 W-m/K

K, =040 W-m/K
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ECE 656 Homework (Week 8) (continued)

10) We have discussed two different electronic thermal conductivities - one measured
under short circuit conditions, k', and one measured under open circuit conditions,

k. The two are related according to:
K =k,—ToS?

Using the estimated TE transport coefficients for Ge doped such that £, = E. (from

prob. 9) find the numerical value of the ratio, x, / K,.

Solution:

The relation between the two electronic thermal conductivities is:
k,=k,—TcS?

k,=k +TcS?

Use numbers from problem 4)

K, =0.40 W-m/K

0=1/p=1/0.0019=526S/cm=526x10* S/m

§=-186 uV/K = -1.86x10™* V/K

K, =K, + TG5> =0.40+300x5.26x10* x(1.86 10} =0.40+0.55

K, =0.95 W-m/K

Ky
— =238
K

e

11)  Using the results of prob. 9), estimate the thermoelectric FOM, ZT for n-type Ge at T
=300 K. You may assume that x, =58 W/m-K.
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ECE 656 Homework (Week 8) (continued)

Solution:
K, =040 W-m/K
0=1/p=1/0.0019=526S/cm=526x10* S/m

§=-186 uV/K =-1.86x10~* V/K

2
(1.86><10‘4) 5.24%10* x 300

ZT = =0.01 ZT =0.01

0.40+58

12) This problem concerns the Peltier coefficient for a 3D semiconductor with parabolic
energy bands. Assuming that the mfp, A, is independent of energy and show that the

Peltier coefficient is:

n3D:TSsD:(kBT] 2}-1(nF)_nF '
-9 ]:O(nF)
Solution:

Begin with:

IT(E—EF)G’(E)dE

—oo

et Je-e) e u(e) -5 o
T Jor(E)dE q jz_}q;x(E)(M(E)/A)[_%]dE

Cancel out constants:
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ECE 656 Homework (Week 8) (continued)

| T(E—EF)(E—EC)(—afO]dE | T(E—EC +E.—E,)(E- EC)(—aijdE

N 0E Y JoE
g df. g o,
I(E—EC)(—aEOJdE j(E—EC)(—aEOJdE
Now change variables:
_(E_EC) _(EF EC) _
n= KT N = KT dE = k,Tdn
Tl /s T o[ 9, T /e
O R e I e
q 1, q /e
jn[— aE"Jdn Jn(— anjd”
+oo , +oo
kT 8nF£nf°dn_nFa ijnfodn o
q 0
o [nfydn
The denominator is:
den=="[nf,dn=-2-r(1)7,(n,)=7,(n,) (i)
anF 0 anF 1 F 0 F
The numerator is:
9 T B im 9 3 0
num = - in fodn=, 5 - info dn=s- r(3)7,(n,)-n, I r(2)7(n,)
num:F(3)Fl(nF)_nFr(2)Fo(nF) (1)
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ECE 656 Homework (Week 8) (continued)

Now use (ii) and (iii) in (i) to find:

o {F(3)ﬁ(m)—mf(2)ﬂ(m)}:_kBT{zfl(nF)—nF}

q 7.(n,) RVACE

S o

’%_T{%(m)_m}

13) The expression for the short circuit (electronic) thermal conductivity is:

=(E—E Y
K, = J.(CITF)G’(E)dE

where o’(E), the differential conductivity, is given by

o(£)= 2L (8) () 4 -2 |

Evaluate this expression assuming that the Fermi level is located above the middle of
the gap, so that only the conduction band need be considered. You may assume that

the mean-free-path for backscattering is independent of energy, /’L(E) =A,,and
parabolic energy bands so that in 3D:

*

m
2mh?

M(E)/d=——5(E~E)H(E-E,),

where H(E — EC) is the Heaviside step function.

Your answer should be expressed in terms of Fermi-Dirac integrals. For a tutorial on
Fermi-Dirac integrals see: “Notes on Fermi-Dirac Integrals, 34 Ed.”
http://nanohub.org/resources/5475/

Your final answer should be an expression for the short-circuit thermal conductivity
of 3D electrons in a semiconductor with parabolic energy bands in terms of the
normalized Fermi energy, 1, =(E, — E, )/kBTL :
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ECE 656 Homework (Week 8) (continued)

Solution:

:T(E—EF)Z

e G’(E)dE

Substituting in for the differential conductivity, we find:

= Uil 20 ) - 26 .

and then for the number of channels:

_M(E—EF)22q2 m df
_i o 2, 2ﬂh2(E—EC) STt

Pull the constants out front:

g s sl e o

Work on the integral first:

K‘0=|: 1 [zqz}x[ m ﬂxz (i)
¢gT\ h ) °\ 220’

]:I(E—EF)Z(E—EC){—%]dE

Add and subtract, E.:

]:T(E—EC+EC—EF)2(E—EC){—%}ZE

Now change variables:

(E_Ec) (EF_EC)

n=-——— Neg=

dE = k,Td
k,T e

B
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ECE 656 Homework (Week 8) (continued)

=k, T)4T(n—nF)2n[—§iE)dn

—oco

=o' J =2 o -5 o

—oco

1=(k,T) frf[ ]dn nFJn( af]dn nFTn{ ggjdn}

0 J J
(kT) o £n3ﬁ)dn—2nFaT£n2ﬁ)dn+niaT:£nfodn:l

3l 0
aannf n- nFa—jnf n+ nFa—Jnfdn}

1=(k,T) air(4)ﬂ(m) 2npaa ()F(m)+maa ()E(m)}

F

'[6.(n,)-4n. 7 (n,)+ 2, (n,)]

Now insert this result in (ii) above to find:

o] 2 [ o ) sm 7o)

q

| 1[5 (2 o 27 - it}

Please see the Appendix of Near-Equilibrium Transport: Fundamentals and
Applications, by Lundstrom and Jeong, for a list transport coefficients worked out for
1D, 2D, and 3D conductors. This is eqn. (A34).

Additional exercise for those who are interested:
Assume that the mean-free-path is energy-dependent according to

ME)=2[(E-E.)/k,T] .

Work out the analytical expression and explain physically why » >0
increases the magnitude of the Seebeck coefficient.
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ECE 656 Homework (Week 8) (continued)

14) An appreciation of the coupled current equations is necessary when experimentally
characterizing electronic materials. The basic equations are:

£ =ps +ST Vim (i)
X X dx
dT .
J o :n-Jx_(Ke-i_KL)E W/m® (ii)

To measure the resistivity of the sample, we force a current, J_, and measure the

resulting voltage. In the first case, we are careful to maintain isothermal conditions,
and in the second case, we are careful to maintain adiabatic (zero heat current)
conditions. Answer the following questions.

14a) If we divide the measured voltage by the injected current, what “isothermal
resistivity” do we measure. (First case.)

14Db) If we divide the measured voltage by the injected current, what “adiabatic resistivity”
do we measure. (Second case.)

14c) Using numbers for lightly doped Ge at room temperature (from Lecture 10, Fall
2011), compare the numerical values of the two measured “resistivities.”

Solution:
14a)

For isothermal conditions, (i) gives:

t =pJ V/m
t V/m t

£ = ~-=p Q-m . =p Q-m
JX A/m X 1dT/dx=0
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ECE 656 Homework (Week 8) (continued)

Solution:
14b)

For adiabatic conditions, (ii) gives:
dT

JQx =nJ, —(K‘e +K‘L)E =

ar nJ,

dx (Ke + KL)

Insert this in (i)

dT rJ Sr Sno
t =pJ +S—=pJ +S—~=|p+7—— |J. =p| 1+—— |/
PR TP ) ["( >JX’)[ < J

E =p(1+21)J,
? =p(1+2r) Qm

x1J,=0

So we measure something a little different (much different if we are measuring a good
thermoelectric material).

Solution:
14c)

Need to compute ZT for this case:
S’cT
K, +K,
Use numbers from Lecture 10, Fall 2011
p,=2 Q-cm=0.02 Q-m
S =-970 uvV/K
k,=22x10" W/m-K
K, =58 W/mK>>«,

ZT =

stor s (9.7x10%) 300

ZT = =2.4x107
K,+K, pkK, 0.02x58

E, = p(1+27)=2(1+0.002)=2 Q-cm

Jx Jy=0
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ECE 656 Homework (Week 8) (continued)

In this case the difference is very small, but consider what would happen if we were
measuring a good thermoelectric material, such as Bi;Tes with ZT =1.

15) We have seen a lot of equations so far, but the course is not about memorizing
equations. With a solid understanding of the physical concepts, only a few equations
are needed. On one sheet (front only, font size 12) summarize the key equations
describing near-equilibrium transport. The point is not to write down every equation,
the point is to identify the few, really important results from which you can derive
anything else you need.

Solution:
. 2q
Landauer expression: I:IJT(E)M(E)(fI—fz)dE
d\F
Bulk current expression: J =0 ( "/ q) -So a1
nx n dx n n dx
The coupled current equations (3D):
t =pJ +S ar
dx

dar
ng :7z:Jx—(K€+KL)E

The transport coefficients (3D):

o (£)=2L A(E) () ) 52 o= o () =22 (01, /)= ma,

k,=k,—-ToS*=ToL K =—0 (E—EF)ZG'(E)dE
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ECE 656 Homework (Week 8) (continued)

Modes:

h + + + 2 + v
M(E)=Z<UX>D(E) 1D: (v )=v 2D: <vx>:;v 3D: <vx>=E
Transmission: Diffusion coefficient:

__ME) _Qr){a)
T(E)_/I(E)+L b=
Power law scattering for mean-free-path: ),(E) =2, [(E - EC)/kBT]r
P S’c T

K, +K,
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