Week 8 Lecture 19 Quiz: Thermoelectric Effects: (Electronic) heat flow

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2013

Student's name:	
-----------------	--

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

- 1) What is the relation between the Peltier coefficient and the Seebeck coefficient called?
 - a. The Wiedemann-Franz law
 - b. The Lorenz relation
 - c. Mathiessen's rule
 - d. The Kelvin relation
 - e. Dulong and Petit law
- 2) What are the coefficients, κ_0 and κ_e ?
 - a) $\kappa_{_0}$ is the thermal conductivity due to phonons and $\kappa_{_e}$ is the same quantity due to electrons
 - b) κ_0 is the thermal conductivity due to electrons and κ_e is the same quantity due to phonons.
 - c) κ_0 is the open-circuit thermal conductivity due to electrons and κ_e is the short-circuit thermal conductivity due to electrons.
 - d) κ_0 is the short-circuit thermal conductivity due to electrons and κ_e is the open-circuit thermal conductivity due to electrons.
 - e) $\kappa_{_0}$ and $\kappa_{_e}$ two names for the same quantity, the thermal conductivity due to electrons.
- 3) When we write the current equation in this form: $J_{nx} = L_{11} \frac{d(F_n/q)}{dx} + L_{12} \frac{dT_L}{dx}$

what is the coefficient L_{12} called?

- a) The Seebeck coefficient.
- b) The Soret coefficient.
- c) The Peltier coefficient.
- d) The electronic thermal conductivity, κ_0 .
- e) The electronic thermal conductivity, $\kappa_{_{e}}$.

continued on next page

4) When we write the current equation in this form:

$$\frac{d(F_n/q)}{dx} = L_{11}J_{nx} + L_{12}\frac{dT_L}{dx}$$

what is the coefficient L_{12} called?

- a) The Seebeck coefficient.
- b) The Soret coefficient.
- c) The Peltier coefficient.
- d) The electronic thermal conductivity, κ_0 .
- e) The electronic thermal conductivity, κ_e .
- 5) The current in an n-type conductor flows at an energy, Δ_n , above the bottom of the conduction band. What determines the value of Δ_n ?
 - a) The location of the Fermi level.
 - b) The shape of the bandstructure.
 - c) The energy depdendence of the mean-free-path.
 - d) All of the above.
 - e) None of the above.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday.