Week 9 Lecture 22 Quiz: Phonon Transport

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2013

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

1) The probability that an electron state is occupied is given by the Fermi function. The number of phonons in a particular state is given by the Bose-Einstein distribution, which is:

a)
$$n_0 = \frac{1}{e^{\hbar\omega/k_B T} + 1}$$

b)
$$n_0 = \frac{1}{e^{\hbar\omega/k_B T} - 1}$$

c)
$$n_0 = \frac{1}{e^{(\hbar\omega - E_F)/k_B T} + 1}$$
.

$$n_0 = \frac{1}{e^{(\hbar\omega - E_F)/k_B T} - 1}$$

e)
$$n_0 = \frac{1}{e^{(\hbar\omega - E_F)/k_B T} - 2}$$
.

- 2) What is a plot of $\hbar\omega(\vec{q})$ vs. \vec{q} for lattice vibrations called?
 - a) The Einstein approximation.
 - b) The Debye approximation.
 - c) The gray approximation.
 - d) The phonon dispersion.
 - e) The Brillouin zone.

(continued on next page)

- 3) How can we obtain the phonon group velocity from a plot of $\hbar\omega(\vec{q})$ vs. \vec{q} ?
 - a) The group velocity is $\vec{v}_g(\vec{q}_0) = \omega(\vec{q})/\vec{q}\Big|_{\vec{q}=\vec{q}_0}$.
 - b) The group velocity is $v_g(\vec{q}_0) = d\omega(\vec{q})/d\vec{q}\Big|_{\vec{q}=\vec{q}_0}$.
 - c) The group velocity is $\vec{v}_{g}(\vec{q}_{0}) = \omega(\vec{q}_{0})\vec{q}_{0}$.
 - d) The group velocity is $v_g(\vec{q}_0) = \vec{c}$.
 - e) The group velocity is $v_g(\vec{q}_0) = \vec{v}_s$.
- 4) What is the biggest difference between the electron dispersion and the phonon dispersion of a material?
 - a) The size in q-space of the Brillouin zone for phonons is smaller than the Brillouin zone for electrons.
 - b) The size in q-space of the Brillouin zone for phonons is larger than the Brillouin zone for electrons.
 - c) The bandwidth in energy of the phonon dispersion is much less than the bandwidth of the electron dispersion.
 - d) The bandwidth in energy of the phonon dispersion is much greater than the bandwidth of the electron dispersion.
 - e) For a given material, the two dispersions are identical.
- 5) Comparing the electrical conductivity to the lattice thermal conductivity, which of the following statements is true?
 - The electrical conductivity can be positive or negative, but the lattice thermal conductivity is always positive.
 - b) The lattice thermal conductivity varies over many orders of magnitude.
 - c) The electrical conductivity varies over many orders of magnitude.
 - d) The two are related by the Wiedemann-Franz Law.
 - e) The two are related by the Lorenz number.
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday.