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1. Introduction

Fermi-Dirac integrals appear frequently in semiconductor problems, so a basic
understanding of their properties is essential. The purpose of these notes is to collect in one
place, some basic information about Fermi-Dirac integrals and their properties. We also present
Matlab functions (see Appendix and [1]) that calculate Fermi-Dirac integrals (the “script F”
defined by Dingle [2] and reviewed by Blakemore [3]) in three different ways.

To see how they arise, consider computing the equilibrium electron concentration per unit
volume in a three-dimensional (3D) semiconductor with a parabolic conduction band from the
expression,
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where g(E) is the density of states, f,(E) is the Fermi function, and E_ is the conduction band
edge. For 3D electrons with a parabolic band structure,
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which can be used in Eq. (1) to write
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By making the substitution,
£=(E-E.)/kT, )

Eq. (3) becomes
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where we have defined
N = (EF - EC )/kBT . (6)
By collecting up parameters, we can express the electron concentration as
2
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is the so-called effective density-of-states and
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is the Fermi-Dirac integral of order 1/2. This integral can only be evaluated numerically. Note

that its value depends on 77, , which measures the location of the Fermi level with respect to the
conduction band edge. It is more convenient to define a related integral,
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so that Eq. (7) can be written as
n=N,, 4, (7). (11)

It is important to recognize whether you are dealing with the “Roman” Fermi-Dirac integral or
the “script” Fermi-Dirac integral.

There are many kinds of Fermi-Dirac integrals. For example, in two dimensional (2D)
semiconductors with a single parabolic band, the density-of-states is

gm(E):%, (12)



and by following a procedure like that one we used in three dimensions, one can show that the
electron density per unit area is

ng =Ny (1) (13)
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is the Fermi-Dirac integral of order O, which can be integrated analytically.
Finally, in one-dimensional (1D) semiconductors with a parabolic band, the density-of-states
is
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and the equilibrium electron density per unit length is

n, =Ny (17 » (17)
where
N = % ZchBT , (18)
and
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is the Fermi-Dirac integral of order —1/2, which must be integrated numerically.

2. General Definition

In the previous section, we saw three examples of Fermi-Dirac integrals. More generally, we
define



1 T elde
T(ji+1) g 1+exp(e-7,)

<) = (20)

where T" is the gamma function. The T" function is just the factorial when its argument is a
positive integer,

I(n)=(n—1)! (for n a positive integer) . (21a)
Also

r(1/2)=r, (21b)
and

I'(p+D=pl'(p). (21c)

As an example, let’s evaluate . |, (77,.) from Eq. (20):
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so we need to evaluate I'(3/2). Using Egs. (21b-c), we find,
F(3/2):F(1/2+1):%F(I/Z):g, (22b)

SO . 4,,,(7n,) is evaluated as
bt 1/2
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which agrees with Eq. (10). For more practice, use the general definition, Eq. (20) and Egs. (21a-
¢) to show that the results for . (77,) and .~ ,(77,.) agree with Egs. (15) and (19).

3. Derivatives of Fermi-Dirac Integrals
Fermi-Dirac integrals have the property that
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which often comes in useful. For example, we have an analytical expression for. /(7,.) , which

means that we have an analytical expression for. - (77,) ,
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Similarly, we can show that there is an analytic expression for any Fermi-Dirac integral of
integer order, j, for j < -2,
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where P, is a polynomial of degree k, and the coefficients p, . are generated from a recurrence
relation [4] (note that the relation in Eq. (26¢) is missing in p. 222 of [4])

Pio=1, (26a)
P =(1+i)p, —(k+1=i)p,_,., i=l..k-1, (26b)
Pex = " Prorg-r- (26¢)
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For example, to evaluate ., (7,)=¢" / (1+e’7‘” ) X P, (e”F ) , polynomial coefficients are

generated from Eqgs. (26a-c) as [4]

Poo =1,
Pio= 1, Pii="Pop = -1, (27)
Pro = 1, Py = 2p1,1 _2p1,0 =—4, Pop =D, = L,

and we find
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4. Asymptotic Expansions for Fermi-Dirac Integrals

It is useful to examine Fermi-Dirac integrals in the non-degenerate ( 77, <<0 ) and
degenerate (7, >>0) limits. For the non-degenerate limit, the result is particularly simple,
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which means that for all orders, j, the Fermi-Dirac integral approaches the exponential in the
non-degenerate limit. To examine Fermi-Dirac integrals in the degenerate limit, we consider the
complete expansion for the Fermi-Dirac integral for j>-1 and 77, >0 [2, 5, 6]
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where 1,=1/2,t, = ZZ:I -1y / U= (1—21_" )( (n), and {'(n) is the Riemann zeta function.
The expressions for the Fermi-Dirac integrals in the degenerate limit (77, >>0) come from Eq.

(30)as .~ (n,) - ni" / I'(j+2) [7]. Specific results for several Fermi-Dirac integrals are shown

below.
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The complete expansion in Eq. (30) can be related to the well-known Sommerfeld expansion [8,
9]. First, note that the integrals to calculate carrier densities in Egs. (1) and (3) are all of the form

oo

[H(E) f,(E)dE . (32)
If H(E) does not vary rapidly in the range of a few k,T about E, , then we can write the
Taylor expansion of H (E)about E, as [9]

(E_EF )n

(33)
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Using this Taylor series expansion, the integral in Eq. (32) can be written as (see [9] for a
detailed derivation)



2 Ep oo 2n—1
» d
[H(E)f,(E)dE= | H(E)dE+Y (k,T)’ Gyt (E) . 64
oo oo n=1 E=Ey
where
1 1 1
a’1:2(1_22n+32n_42n+.”j’ (35)

and it is noted that a, =2t, . Equation (34) is known as the Sommerfeld expansion [8, 9].
Typically, the first term in the sum in Eq. (34) is all that is needed, and the result is

TH(E)fo(E)dE:iEH(E)dE+%2(kBT)2H'(EF). (36)

If we scale E by k,T in Eq. (34), €= E/kBT , then Eq. (34) becomes

oo

Mg oo 2n-1
[ H(e) s, (e)de= | H(g)dg+zan%fz(g)\ . 37)
oo n=1 e=ny

Then the Sommerfeld expansion for the Fermi-Dirac integral of order j can be evaluated by
letting H (€)= 8j/F(j+ 1) in Eq. (37), and the result is
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Equation (38) is the same as Eq. (30) except that the second term in Eq. (30) is omitted [5]. In
the degenerate limit, however, the second term in Eq. (30) vanishes, so the Egs. (30) and (38)
give the same results as Eqgs. (31a-e).

5. Approximate Expressions for Common Fermi-Dirac Integrals

Fermi-Dirac integrals can be quickly evaluated by tabulation [2, 7, 10, 11] or analytic
approximation [12-14]. We briefly mention some of the analytic approximations and refer the
reader to a Matlab function. Bednarczyk et al. [12] proposed a single analytic approximation that
evaluates the Fermi-Dirac integral of order j=1/2 with errors less than 0.4 % [3]. Aymerich-
Humet et al. [13, 14] introduced an analytic approximation for a general j, and it gives an error
of 1.2 % for —1/2< j<1/2 and 0.7 % for 1/2< j<5/2, and the error increases with larger j.
The Matlab fuction, “FD_int_approx.m,” [1] calculates the Fermi-Dirac integral defined in Eq.
(10) with orders j=>-—1/2 using these analytic approximations. The source code of this

relatively short function is listed in the Appendix.



If a better accuracy is required and a longer CPU time is allowed, then the approximations
proposed by Halen and Pulfrey [15, 16] may be used. In this model, several approximate
expressions are introduced based on the series expansion in Eq. (30), and the error is less than
10” for —1/2< Jj<7/2 [15]. The Matlab function, “FDjx.m,” [1] is the main function that
calculates the Fermi-Dirac integrals using this model. This function includes tables of
coefficients, so it is not simple enough to be shown in the Appendix, but it can be downloaded
from [1].

There also have been discussions on the simple analytic calculation of the inverse Fermi-
Dirac integrals of order j=1/2 [3]. This has been of particular interest because it can be used to

calculate the Fermi level from the known bulk charge density in Eq. (11), as 77, =. ;' (n/N,,).
Joyce and Dixon [17] examined a series approach that gives |A77F| <0.01 for 7, .. =55 [3],
and a simpler expression from Joyce [18] gives |A 77F| <0.03 for 7, =5 [3]. Nilsson proposed
two different full-range (—10<7, <20) expressions [19] with |A7,|<0.01 and |A7,|<0.005
[3]. Nilsson later presented two empirical approximations [20] that give |A77F| <0.01 for

Newax =95 and 77, =20, respectively [3].

6. Numerical Evaluation of Fermi-Dirac Integrals

Fermi-Dirac integrals can be evaluated accurately by numerical integration. Here we briefly
review the approach by Press et al. for generalized Fermi-Dirac integrals with order j>-—1 [21].

In this approach, the composite trapezoidal rule with variable transformation £ =exp (t —e”) is
used for 77, <15, and the double exponential (DE) rule is used for larger 77, . Double precision

(eps, ~22x107"°) can be achieved after 60 to 500 iterations [21]. The Matlab function,
“FD_int_num.m,” [1] evaluates the Fermi-Dirac integral numerically using the composite
trapezoidal rule following the approach in [21]. The source code is listed in the Appendix. This
approach provides very high accuracy, but the CPU time is considerably longer. An online
simulation tool that calculates the Fermi-Dirac integrals using this source code has been
deployed at nanoHUB.org [22]. Note that the numerical approach we consider in this note is
relatively simple, and there are other advanced numerical integration algorithms [23] suggested
to improve the calculation speed.

In Fig. 1, we compare the accuracy and the timing of the three approaches that calculate

.~ (m;) . The Fermi-Dirac integral of order j=1/2 (.4, (7, )) is calculated for —10<7, <10
with 77, spacing = 0.01 using approximate expressions (“FD_int_approx.m” and “FDjx.m”) and
the rigorous numerical integration (“FD_int_num.m”) with double-precision. The relative errors

of the approximate expressions are calculated as (./ where .

/1/2,approx S /I/Z,m,tm )/ /1/2,num ’ /1/2,approx

and . represent the results from the approximate expression and the numerical integration

/1/2,num
respectively. The elapsed time measured for each approach (using Matlab commands “tic/toc”
for Pentium 4 CPU 34 GHz and 2.0 GB RAM) clearly shows the compromise between the
accuracy and the CPU time.
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Fig. 1. (a) Relative errors from the approximate expressions for ., (77, ) with respect to the
numerical integration (“FD_int_num.m”). (A) Relative error from “FD_int_approx.m”. (B)
Relative error from “FDjx.m”. All Matlab functions are available in [1].(b) The absolute values

of the relative errors in the log scale. The elapsed time measured for the three approaches clearly
shows the trade-off between the accuracy and the CPU time.
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Appendix

“FD_int_approx.m”

function y = FD_int_approx( eta, j )

% Analytic approximations for Fermi-Dirac integrals of order j > -1/2

% Date: September 29, 2008

% Author: Raseong Kim (Purdue University)

%

% Inputs

% eta: eta_F

% j: FD integral order

%

% Outputs

% y: value of FD integral (the "script F" defined by Blakemore (1982))

%

% For more information in Fermi-Dirac integrals, see:

% "Notes on Fermi-Dirac Integrals (3rd Edition)" by Raseong Kim and Mark

% Lundstrom at http://nanohub.org/resources/5475

%

% References

% [1]D. Bednarczyk and J. Bednarczyk, Phys. Lett. A, 64, 409 (1978)

% [2]J. S. Blakemore, Solid-St. Electron, 25, 1067 (1982)

% [3]X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, Solid-St. Electron, 24, 981 (1981)
% [4]X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, J. Appl. Phys., 54, 2850 (1983)

ifj<-1/2
error( 'The order should be equal to or larger than -1/2.")
else
X = eta;
switch j
case 0
y=log(1+exp(x)); % analytic expression

case 1/2
% Model proposed in [1]
% Expressions from egs. (22)-(24) of [2]
mu=x."4+50+33.6*x."(1-0.68*exp(-0.17"(x+1).22));
xi=3*sqrt(pi)./(4*mu.A(3/8));
y=(exp(-x)+xi).N-1;

case 3/2
% Model proposed in [3]
% Expressions from eq. (5) of [3]
% The integral is divided by gamma( j + 1) to make it consistent with [1] and [2].
a=14.9;
b =2.64;
c=9/4
y=((j+1)*2A(j+1)./(b+x+(abs(x-b).rc+a).r(1/c)) . (j+1)..
+exp(-x)./gamma(j+1)).A-1./gamma(j+1);

otherwise
% Model proposed in [4]
% Expressions from egs. (6)-(7) of [4]
% The integral is divided by gamma( j + 1) to make it consistent with [1] and [2].
a=(1+15/4*(j+1)+1/40* (j+1)r2)r(1/2);
b=1.8+0.61"j;
c=2+(2-sqrt(2))*27(-j);
y=((j+1)*27(j+1)./(b+x+(abs(x-b).Ac+arc). M(1/c)) M(j+1)..
+exp(-x)./gamma(j+1)).2-1./gamma(j+1);
end
end

12



“FD_int_num.m”

function [y N err ] = FD_int_num( eta, j, tol, Nmax )

% Numerical integration of Fermi-Dirac integrals for order j > -1.

% Author: Raseong Kim (Purdue University)

% Date: September 29, 208

% Extended (composite) trapezoidal quadrature rule with variable

% transformation, x = exp(t- exp(t))

% Valid for eta ~< 15 with precision ~eps with 60~500 evaluations.

%

% Inputs

% eta: eta_F

% j: FD integral order

% tol: tolerance

% Nmax: number of iterations limit

%

% Note: When "eta" is an array, this function should be executed

% repeatedly for each component.

%

% Outputs

% y: value of FD integral (the "script F" defined by Blakemore (1982))

% N: number of iterations

% err: error

%

% For more information in Fermi-Dirac integrals, see:

% "Notes on Fermi-Dirac Integrals (3rd Edition)" by Raseong Kim and Mark
% Lundstrom at http://nanohub.org/resources/5475

%

% Reference

% [1]W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
% Numerical recipies: The art of scientific computing, 3rd Ed., Cambridge
% University Press, 2007.

for N =1 : Nmax
a=-4.5; % limits for t
b=5.0;
t=linspace(a, b, N+ 1); % generate intervals
X=exp(t-exp(-t))
f=x."(1+exp(-t)).*x.Mj./(1+exp(x-eta));
y =trapz(t,f);

if N> 1 % test for convergence
err=abs(y-y_old);
if err < tol
break;
end
end

y_old =vy;
end

if N == Nmax
error( 'Increase the maximum number of iterations.")
end

y=y./gamma(j+1);
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