Notes on Fermi-Dirac Integrals $3^{\text {rd }}$ Edition

Raseong Kim and Mark Lundstrom
Network for Computational Nanotechnology
Purdue University

December 10, 2008
(Last revised on August 4, 2011)

1. Introduction

Fermi-Dirac integrals appear frequently in semiconductor problems, so a basic understanding of their properties is essential. The purpose of these notes is to collect in one place, some basic information about Fermi-Dirac integrals and their properties. We also present Matlab functions (see Appendix and [1]) that calculate Fermi-Dirac integrals (the "script F" defined by Dingle [2] and reviewed by Blakemore [3]) in three different ways.

To see how they arise, consider computing the equilibrium electron concentration per unit volume in a three-dimensional (3D) semiconductor with a parabolic conduction band from the expression,

$$
\begin{equation*}
n=\int_{E_{C}}^{\infty} g(E) f_{0}(E) d E=\int_{E_{C}}^{\infty} \frac{g(E) d E}{1+e^{\left(E-E_{F}\right) / k_{B} T}}, \tag{1}
\end{equation*}
$$

where $g(E)$ is the density of states, $f_{0}(E)$ is the Fermi function, and E_{C} is the conduction band edge. For 3D electrons with a parabolic band structure,

$$
\begin{equation*}
g_{3 \mathrm{D}}(E)=\frac{\left(2 m^{*}\right)^{3 / 2}}{2 \pi^{2} \hbar^{3}} \sqrt{E-E_{C}}, \tag{2}
\end{equation*}
$$

which can be used in Eq. (1) to write

$$
\begin{equation*}
n=\frac{\left(2 m^{*}\right)^{3 / 2}}{2 \pi^{2} \hbar^{3}} \int_{E_{C}}^{\infty} \frac{\sqrt{E-E_{C}} d E}{1+e^{\left(E-E_{F}\right) / k_{B} T}} . \tag{3}
\end{equation*}
$$

By making the substitution,

$$
\begin{equation*}
\varepsilon=\left(E-E_{C}\right) / k_{B} T, \tag{4}
\end{equation*}
$$

Eq. (3) becomes

$$
\begin{equation*}
n=\frac{\left(2 m^{*} k_{B} T\right)^{3 / 2}}{2 \pi^{2} \hbar^{3}} \int_{0}^{\infty} \frac{\varepsilon^{1 / 2} d \varepsilon}{1+e^{\varepsilon-\eta_{F}}}, \tag{5}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
\eta_{F} \equiv\left(E_{F}-E_{C}\right) / k_{B} T . \tag{6}
\end{equation*}
$$

By collecting up parameters, we can express the electron concentration as

$$
\begin{equation*}
n=N_{3 \mathrm{D}} \frac{2}{\sqrt{\pi}} F_{1 / 2}\left(\eta_{F}\right), \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{3 \mathrm{D}}=2\left(\frac{2 \pi m^{*} k_{B} T}{h^{2}}\right)^{3 / 2} \tag{8}
\end{equation*}
$$

is the so-called effective density-of-states and

$$
\begin{equation*}
F_{1 / 2}\left(\eta_{F}\right) \equiv \int_{0}^{\infty} \frac{\varepsilon^{1 / 2} d \varepsilon}{1+\exp \left(\varepsilon-\eta_{F}\right)} \tag{9}
\end{equation*}
$$

is the Fermi-Dirac integral of order $1 / 2$. This integral can only be evaluated numerically. Note that its value depends on η_{F}, which measures the location of the Fermi level with respect to the conduction band edge. It is more convenient to define a related integral,

$$
\begin{equation*}
\mathscr{F}_{1 / 2}\left(\eta_{F}\right) \equiv \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\varepsilon^{1 / 2} d \varepsilon}{1+\exp \left(\varepsilon-\eta_{F}\right)} \tag{10}
\end{equation*}
$$

so that Eq. (7) can be written as

$$
\begin{equation*}
n=N_{3 \mathrm{D}} \cdot \mathscr{F}_{1 / 2}\left(\eta_{F}\right) . \tag{11}
\end{equation*}
$$

It is important to recognize whether you are dealing with the "Roman" Fermi-Dirac integral or the "script" Fermi-Dirac integral.

There are many kinds of Fermi-Dirac integrals. For example, in two dimensional (2D) semiconductors with a single parabolic band, the density-of-states is

$$
\begin{equation*}
g_{2 \mathrm{D}}(E)=\frac{m^{*}}{\pi \hbar^{2}}, \tag{12}
\end{equation*}
$$

and by following a procedure like that one we used in three dimensions, one can show that the electron density per unit area is

$$
\begin{equation*}
n_{S}=N_{2 \mathrm{D}} \mathscr{F}_{0}\left(\eta_{F}\right) \text {, } \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{2 \mathrm{D}}=\frac{m^{*} k_{B} T}{\pi \hbar^{2}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{O}_{0}\left(\eta_{F}\right)=\int_{0}^{\infty} \frac{\varepsilon^{0} d \varepsilon}{1+e^{\varepsilon-\eta_{F}}}=\ln \left(1+e^{\eta_{F}}\right) \tag{15}
\end{equation*}
$$

is the Fermi-Dirac integral of order 0 , which can be integrated analytically.
Finally, in one-dimensional (1D) semiconductors with a parabolic band, the density-of-states is

$$
\begin{equation*}
g_{1 \mathrm{D}}(E)=\frac{\sqrt{2 m^{*}}}{\pi \hbar} \sqrt{\frac{1}{E-E_{C}}}, \tag{16}
\end{equation*}
$$

and the equilibrium electron density per unit length is

$$
\begin{equation*}
n_{L}=N_{1 \mathrm{D}} \mathscr{F}_{-1 / 2}\left(\eta_{F}\right), \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{\mathrm{lD}}=\frac{1}{\hbar} \sqrt{\frac{2 m^{*} k_{B} T}{\pi}}, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{T}_{-1 / 2}\left(\eta_{F}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\varepsilon^{-1 / 2} d \varepsilon}{1+e^{\varepsilon-\eta_{F}}} \tag{19}
\end{equation*}
$$

is the Fermi-Dirac integral of order $-1 / 2$, which must be integrated numerically.

2. General Definition

In the previous section, we saw three examples of Fermi-Dirac integrals. More generally, we define

$$
\begin{equation*}
\mathscr{V}_{j}\left(\eta_{F}\right) \equiv \frac{1}{\Gamma(j+1)} \int_{0}^{\infty} \frac{\varepsilon^{j} d \varepsilon}{1+\exp \left(\varepsilon-\eta_{F}\right)}, \tag{20}
\end{equation*}
$$

where Γ is the gamma function. The Γ function is just the factorial when its argument is a positive integer,

$$
\begin{equation*}
\Gamma(n)=(n-1)!\quad(\text { for } n \text { a positive integer }) \tag{21a}
\end{equation*}
$$

Also

$$
\begin{equation*}
\Gamma(1 / 2)=\sqrt{\pi} \tag{21b}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma(p+1)=p \Gamma(p) \tag{21c}
\end{equation*}
$$

As an example, let's evaluate $\mathscr{F}_{1 / 2}\left(\eta_{F}\right)$ from Eq. (20):

$$
\begin{equation*}
\mathscr{T}_{1 / 2}\left(\eta_{F}\right) \equiv \frac{1}{\Gamma(1 / 2+1)} \int_{0}^{\infty} \frac{\varepsilon^{1 / 2} d \varepsilon}{1+e^{\varepsilon-\eta_{F}}} \tag{22a}
\end{equation*}
$$

so we need to evaluate $\Gamma(3 / 2)$. Using Eqs. (21b-c), we find,

$$
\begin{equation*}
\Gamma(3 / 2)=\Gamma(1 / 2+1)=\frac{1}{2} \Gamma(1 / 2)=\frac{\sqrt{\pi}}{2}, \tag{22b}
\end{equation*}
$$

so $\mathscr{F}_{1 / 2}\left(\eta_{F}\right)$ is evaluated as

$$
\begin{equation*}
\mathscr{T}_{1 / 2}\left(\eta_{F}\right) \equiv \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\varepsilon^{1 / 2} d \varepsilon}{1+e^{\varepsilon-\eta_{F}}} \tag{22c}
\end{equation*}
$$

which agrees with Eq. (10). For more practice, use the general definition, Eq. (20) and Eqs. (21ac) to show that the results for $\mathscr{F}_{0}\left(\eta_{F}\right)$ and $\mathscr{F}_{-1 / 2}\left(\eta_{F}\right)$ agree with Eqs. (15) and (19).

3. Derivatives of Fermi-Dirac Integrals

Fermi-Dirac integrals have the property that

$$
\begin{equation*}
\frac{d \mathscr{F}_{j}}{d \eta_{F}}=\mathscr{F}_{j-1} \tag{23}
\end{equation*}
$$

which often comes in useful. For example, we have an analytical expression for $\mathscr{F}_{0}\left(\eta_{F}\right)$, which means that we have an analytical expression for $\mathscr{F}_{-1}\left(\eta_{F}\right)$,

$$
\begin{equation*}
\mathscr{F}_{-1}=\frac{d \mathscr{F}_{0}}{d \eta_{F}}=\frac{1}{1+e^{-\eta_{F}}} . \tag{24}
\end{equation*}
$$

Similarly, we can show that there is an analytic expression for any Fermi-Dirac integral of integer order, j, for $j \leq-2$,

$$
\begin{equation*}
\mathscr{F}_{j}\left(\eta_{F}\right)=\frac{e^{\eta_{F}}}{\left(1+e^{\eta_{F}}\right)^{-j}} P_{-j-2}\left(e^{\eta_{F}}\right), \tag{25}
\end{equation*}
$$

where P_{k} is a polynomial of degree k, and the coefficients $p_{k, i}$ are generated from a recurrence relation [4] (note that the relation in Eq. (26c) is missing in p. 222 of [4])

$$
\begin{align*}
& p_{k, 0}=1, \tag{26a}\\
& p_{k, i}=(1+i) p_{k-1, i}-(k+1-i) p_{k-1, i-1} \quad i=1, \ldots, k-1, \tag{26b}\\
& p_{k, k}=-p_{k-1, k-1} . \tag{26c}
\end{align*}
$$

For example, to evaluate $\mathscr{F}_{-4}\left(\eta_{F}\right)=e^{\eta_{F}} /\left(1+e^{\eta_{F}}\right)^{4} \times P_{2}\left(e^{\eta_{F}}\right)$, polynomial coefficients are generated from Eqs. (26a-c) as [4]

$$
\begin{array}{ll}
p_{0,0}=1, \\
p_{1,0}=1, & p_{1,1}=-p_{0,0}=-1, \tag{27}\\
p_{2,0}=1, & p_{2,1}=2 p_{1,1}-2 p_{1,0}=-4, \quad p_{2,2}=-p_{1,1}=1,
\end{array}
$$

and we find

$$
\begin{equation*}
\mathscr{F}_{-4}\left(\eta_{F}\right)=\frac{e^{\eta_{F}}}{\left(1+e^{\eta_{F}}\right)^{4}} \sum_{i=0}^{2} p_{2, i} e^{i \eta_{F}}=\frac{e^{\eta_{F}}}{\left(1+e^{\eta_{F}}\right)^{4}}\left(1-4 e^{\eta_{F}}+e^{2 \eta_{F}}\right) . \tag{28}
\end{equation*}
$$

4. Asymptotic Expansions for Fermi-Dirac Integrals

It is useful to examine Fermi-Dirac integrals in the non-degenerate ($\eta_{F} \ll 0$) and degenerate $\left(\eta_{F} \gg 0\right)$ limits. For the non-degenerate limit, the result is particularly simple,

$$
\begin{equation*}
\mathscr{F}_{j}\left(\eta_{F}\right) \rightarrow e^{\eta_{F}} \tag{29}
\end{equation*}
$$

which means that for all orders, j, the Fermi-Dirac integral approaches the exponential in the non-degenerate limit. To examine Fermi-Dirac integrals in the degenerate limit, we consider the complete expansion for the Fermi-Dirac integral for $j>-1$ and $\eta_{F}>0[2,5,6]$

$$
\begin{equation*}
\mathscr{F}_{j}\left(\eta_{F}\right)=2 \eta_{F}^{j+1} \sum_{n=0}^{\infty} \frac{t_{2 n}}{\Gamma(j+2-2 n) \eta_{F}^{2 n}}+\cos (\pi j) \sum_{n=1}^{\infty} \frac{(-1)^{n-1} e^{-n \eta_{F}}}{n^{j+1}}, \tag{30}
\end{equation*}
$$

where $t_{0}=1 / 2, t_{n}=\sum_{\mu=1}^{\infty}(-1)^{\mu-1} / \mu^{n}=\left(1-2^{1-n}\right) \zeta(n)$, and $\zeta(n)$ is the Riemann zeta function. The expressions for the Fermi-Dirac integrals in the degenerate limit ($\eta_{F} \gg 0$) come from Eq. (30) as $\mathscr{J}_{j}\left(\eta_{F}\right) \rightarrow \eta_{F}^{j+1} / \Gamma(j+2)$ [7]. Specific results for several Fermi-Dirac integrals are shown below.

$$
\begin{align*}
& \mathscr{F}_{-1 / 2}\left(\eta_{F}\right) \rightarrow \frac{2 \eta_{F}^{1 / 2}}{\sqrt{\pi}}, \tag{31a}\\
& \mathscr{F}_{1 / 2}\left(\eta_{F}\right) \rightarrow \frac{4 \eta_{F}^{3 / 2}}{3 \sqrt{\pi}}, \tag{31b}\\
& \mathscr{F}_{1}\left(\eta_{F}\right) \rightarrow \frac{1}{2} \eta_{F}^{2}, \tag{31c}\\
& \mathscr{F}_{3 / 2}\left(\eta_{F}\right) \rightarrow \frac{8 \eta_{F}^{5 / 2}}{15 \sqrt{\pi}}, \tag{31d}\\
& \mathscr{F}_{2}\left(\eta_{F}\right) \rightarrow \frac{1}{6} \eta_{F}^{3} \tag{31e}
\end{align*}
$$

The complete expansion in Eq. (30) can be related to the well-known Sommerfeld expansion [8, 9]. First, note that the integrals to calculate carrier densities in Eqs. (1) and (3) are all of the form

$$
\begin{equation*}
\int_{-\infty}^{\infty} H(E) f_{0}(E) d E . \tag{32}
\end{equation*}
$$

If $H(E)$ does not vary rapidly in the range of a few $k_{B} T$ about E_{F}, then we can write the Taylor expansion of $H(E)$ about E_{F} as [9]

$$
\begin{equation*}
H(E)=\left.\sum_{n=0}^{\infty} \frac{d^{n}}{d E^{n}} H(E)\right|_{E=E_{F}} \frac{\left(E-E_{F}\right)^{n}}{n!} . \tag{33}
\end{equation*}
$$

Using this Taylor series expansion, the integral in Eq. (32) can be written as (see [9] for a detailed derivation)

$$
\begin{equation*}
\int_{-\infty}^{\infty} H(E) f_{0}(E) d E=\int_{-\infty}^{E_{F}} H(E) d E+\left.\sum_{n=1}^{\infty}\left(k_{B} T\right)^{2 n} a_{n} \frac{d^{2 n-1}}{d E^{2 n-1}} H(E)\right|_{E=E_{F}} \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n}=2\left(1-\frac{1}{2^{2 n}}+\frac{1}{3^{2 n}}-\frac{1}{4^{2 n}}+\cdots\right) \tag{35}
\end{equation*}
$$

and it is noted that $a_{n}=2 t_{2 n}$. Equation (34) is known as the Sommerfeld expansion [8, 9]. Typically, the first term in the sum in Eq. (34) is all that is needed, and the result is

$$
\begin{equation*}
\int_{-\infty}^{\infty} H(E) f_{0}(E) d E \simeq \int_{-\infty}^{E_{F}} H(E) d E+\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2} H^{\prime}\left(E_{F}\right) \tag{36}
\end{equation*}
$$

If we scale E by $k_{B} T$ in Eq. (34), $\varepsilon \equiv E / k_{B} T$, then Eq. (34) becomes

$$
\begin{equation*}
\int_{-\infty}^{\infty} H(\varepsilon) f_{0}(\varepsilon) d \varepsilon=\int_{-\infty}^{\eta_{F}} H(\varepsilon) d \varepsilon+\left.\sum_{n=1}^{\infty} a_{n} \frac{d^{2 n-1}}{d \varepsilon^{2 n-1}} H(\varepsilon)\right|_{\varepsilon=\eta_{F}} . \tag{37}
\end{equation*}
$$

Then the Sommerfeld expansion for the Fermi-Dirac integral of order j can be evaluated by letting $H(\varepsilon)=\varepsilon^{j} / \Gamma(j+1)$ in Eq. (37), and the result is

$$
\begin{equation*}
\mathscr{F}_{j}\left(\eta_{F}\right)=2 \eta_{F}^{j+1} \sum_{n=0}^{\infty} \frac{t_{2 n}}{\Gamma(j+2-2 n) \eta_{F}^{2 n}} \tag{38}
\end{equation*}
$$

Equation (38) is the same as Eq. (30) except that the second term in Eq. (30) is omitted [5]. In the degenerate limit, however, the second term in Eq. (30) vanishes, so the Eqs. (30) and (38) give the same results as Eqs. (31a-e).

5. Approximate Expressions for Common Fermi-Dirac Integrals

Fermi-Dirac integrals can be quickly evaluated by tabulation [2, 7, 10, 11] or analytic approximation [12-14]. We briefly mention some of the analytic approximations and refer the reader to a Matlab function. Bednarczyk et al. [12] proposed a single analytic approximation that evaluates the Fermi-Dirac integral of order $j=1 / 2$ with errors less than 0.4% [3]. AymerichHumet et al. [13, 14] introduced an analytic approximation for a general j, and it gives an error of 1.2% for $-1 / 2<j<1 / 2$ and 0.7% for $1 / 2<j<5 / 2$, and the error increases with larger j. The Matlab fuction, "FD_int_approx.m," [1] calculates the Fermi-Dirac integral defined in Eq. (10) with orders $j \geq-1 / 2$ using these analytic approximations. The source code of this relatively short function is listed in the Appendix.

If a better accuracy is required and a longer CPU time is allowed, then the approximations proposed by Halen and Pulfrey [15, 16] may be used. In this model, several approximate expressions are introduced based on the series expansion in Eq. (30), and the error is less than 10^{-5} for $-1 / 2 \leq j \leq 7 / 2$ [15]. The Matlab function, "FDjx.m," [1] is the main function that calculates the Fermi-Dirac integrals using this model. This function includes tables of coefficients, so it is not simple enough to be shown in the Appendix, but it can be downloaded from [1].

There also have been discussions on the simple analytic calculation of the inverse FermiDirac integrals of order $j=1 / 2$ [3]. This has been of particular interest because it can be used to calculate the Fermi level from the known bulk charge density in Eq. (11), as $\eta_{F}=\mathscr{F}_{1 / 2}^{-1}\left(n / N_{3 D}\right)$. Joyce and Dixon [17] examined a series approach that gives $\left|\Delta \eta_{F}\right| \leq 0.01$ for $\eta_{F \max } \simeq 5.5$ [3], and a simpler expression from Joyce [18] gives $\left|\Delta \eta_{F}\right| \leq 0.03$ for $\eta_{F \max } \simeq 5$ [3]. Nilsson proposed two different full-range $\left(-10 \leq \eta_{F} \leq 20\right)$ expressions [19] with $\left|\Delta \eta_{F}\right| \leq 0.01$ and $\left|\Delta \eta_{F}\right| \leq 0.005$ [3]. Nilsson later presented two empirical approximations [20] that give $\left|\Delta \eta_{F}\right| \leq 0.01$ for $\eta_{F \text { max }} \simeq 5.5$ and $\eta_{F \text { max }} \simeq 20$, respectively [3].

6. Numerical Evaluation of Fermi-Dirac Integrals

Fermi-Dirac integrals can be evaluated accurately by numerical integration. Here we briefly review the approach by Press et al. for generalized Fermi-Dirac integrals with order $j>-1$ [21]. In this approach, the composite trapezoidal rule with variable transformation $\varepsilon=\exp \left(t-e^{-t}\right)$ is used for $\eta_{F} \leq 15$, and the double exponential (DE) rule is used for larger η_{F}. Double precision (eps, $\sim 2.2 \times 10^{-16}$) can be achieved after 60 to 500 iterations [21]. The Matlab function, "FD_int_num.m," [1] evaluates the Fermi-Dirac integral numerically using the composite trapezoidal rule following the approach in [21]. The source code is listed in the Appendix. This approach provides very high accuracy, but the CPU time is considerably longer. An online simulation tool that calculates the Fermi-Dirac integrals using this source code has been deployed at nanoHUB.org [22]. Note that the numerical approach we consider in this note is relatively simple, and there are other advanced numerical integration algorithms [23] suggested to improve the calculation speed.

In Fig. 1, we compare the accuracy and the timing of the three approaches that calculate $\mathscr{F}_{j}\left(\eta_{F}\right)$. The Fermi-Dirac integral of order $j=1 / 2\left(\mathscr{T}_{1 / 2}\left(\eta_{F}\right)\right)$ is calculated for $-10 \leq \eta_{F} \leq 10$ with η_{F} spacing $=0.01$ using approximate expressions ("FD_int_approx.m" and "FDjx.m") and the rigorous numerical integration ("FD_int_num.m") with double-precision. The relative errors of the approximate expressions are calculated as $\left(\mathscr{F}_{1 / 2, \text { approx }}-\mathscr{F}_{1 / 2, \text { num }}\right) / \mathscr{S}_{1 / 2, \text { num }}$, where $\mathscr{S}_{1 / 2, \text { approx }}$ and $\mathscr{F}_{1 / 2, \text { num }}$ represent the results from the approximate expression and the numerical integration respectively. The elapsed time measured for each approach (using Matlab commands "tic/toc" for Pentium 4 CPU 3.4 GHz and 2.0 GB RAM) clearly shows the compromise between the accuracy and the CPU time.

Fig. 1. (a) Relative errors from the approximate expressions for $\mathscr{F}_{1 / 2}\left(\eta_{F}\right)$ with respect to the numerical integration ("FD_int_num.m"). (A) Relative error from "FD_int_approx.m". (B) Relative error from "FDjx.m". All Matlab functions are available in [1].(b) The absolute values of the relative errors in the log scale. The elapsed time measured for the three approaches clearly shows the trade-off between the accuracy and the CPU time.

References

[1] R. Kim and M. S. Lundstrom (2008), "Notes on Fermi-Dirac Integrals (3rd Edition)," Available: https://www.nanohub.org/resources/5475/.
[2] R. Dingle, "The Fermi-Dirac integrals $\mathscr{F}_{p}(\eta)=(p!)^{-1} \int_{0}^{\infty} \varepsilon^{p}\left(e^{\varepsilon-\eta}+1\right)^{-1} d \varepsilon$," Applied Scientific Research, vol. 6, no. 1, pp. 225-239, 1957.
[3] J. S. Blakemore, "Approximations for Fermi-Dirac integrals, especially the function $\mathscr{F}_{1 / 2}(\eta)$ used to describe electron density in a semiconductor," Solid-State Electron., vol. 25, no. 11, pp. 1067-1076, 1982.
[4] M. Goano, "Algorithm 745: computation of the complete and incomplete Fermi-Dirac integral," ACM Trans. Math. Softw., vol. 21, no. 3, pp. 221-232, 1995.
[5] R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation. London: Academic Press, 1973.
[6] T. M. Garoni, N. E. Frankel, and M. L. Glasser, "Complete asymptotic expansions of the Fermi--Dirac integrals $\mathscr{F}_{p}(\eta)=1 / \Gamma(p+1) \int_{0}^{\infty} \varepsilon^{p} /\left(1+e^{\varepsilon-\eta}\right) d \varepsilon, " J$. Math. Phys., vol. 42, no. 4, pp. 1860-1868, 2001.
[7] J. McDougall and E. C. Stoner, "The computation of Fermi-Dirac functions," Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 237, no. 773, pp. 67-104, 1938.
[8] A. Sommerfeld, "Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik," Zeitschrift für Physik A Hadrons and Nuclei, vol. 47, no. 1, pp. 1-32, 1928.
[9] N. W. Ashcroft and N. D. Mermin, Solid State Physics. Philadelphia: Saunders College Publishing, 1976.
[10] A. C. Beer, M. N. Chase, and P. F. Choquard, "Extension of McDougall-Stoner tables of the Fermi-Dirac functions," Helvetica Physica Acta, vol. 28, pp. 529-542, 1955.
[11] P. Rhodes, "Fermi-Dirac functions of integral order," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 204, no. 1078, pp. 396-405, 1950.
[12] D. Bednarczyk and J. Bednarczyk, "The approximation of the Fermi-Dirac integral $\mathscr{F}_{1 / 2}(\eta)$," Physics Letters A, vol. 64, no. 4, pp. 409-410, 1978.
[13] X. Aymerich-Humet, F. Serra-Mestres, and J. Millán, "An analytical approximation for the Fermi-Dirac integral $F_{3 / 2}(\eta)$," Solid-State Electron., vol. 24, no. 10, pp. 981-982, 1981.
[14] X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, "A generalized approximation of the Fermi--Dirac integrals," J. Appl. Phys., vol. 54, no. 5, pp. 2850-2851, 1983.
[15] P. V. Halen and D. L. Pulfrey, "Accurate, short series approximations to Fermi-Dirac integrals of order $-1 / 2,1 / 2,1,3 / 2,2,5 / 2,3$, and $7 / 2, " J$. Appl. Phys., vol. 57, no. 12, pp. 5271-5274, 1985.
[16] P. Van Halen and D. L. Pulfrey, "Erratum: "Accurate, short series approximation to Fermi-Dirac integrals of order $-1 / 2,1 / 2,1,3 / 2,2,5 / 2,3$, and 7/2" [J. Appl. Phys. 57, 5271 (1985)]," J. Appl. Phys., vol. 59, no. 6, p. 2264, 1986.
[17] W. B. Joyce and R. W. Dixon, "Analytic approximations for the Fermi energy of an ideal Fermi gas," Appl. Phys. Lett., vol. 31, no. 5, pp. 354-356, 1977.
[18] W. B. Joyce, "Analytic approximations for the Fermi energy in (Al,Ga)As," Appl. Phys. Lett., vol. 32, no. 10, pp. 680-681, 1978.
[19] N. G. Nilsson, "An accurate approximation of the generalized Einstein relation for degenerate semiconductors," Phys. Stat. Solidi (a), vol. 19, pp. K75-K78, 1973.
[20] N. G. Nilsson, "Empirical approximations for the Fermi energy in a semiconductor with parabolic bands," Appl. Phys. Lett., vol. 33, no. 7, pp. 653-654, 1978.
[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. New York: Cambridge University Press, 2007.
[22] X. Sun, M. Lundstrom, and R. Kim (2011), "FD integral calculator," Available: http://nanohub.org/tools/fdical.
[23] A. Natarajan and N. Mohankumar, "An accurate method for the generalized Fermi-Dirac integral," Comput. Phys. Commun., vol. 137, no. 3, pp. 361-365, 2001.

Appendix

"FD_int_approx.m"
function $\mathrm{y}=$ FD_int_approx(eta, j)
\% Analytic approximations for Fermi-Dirac integrals of order j>-1/2
\% Date: September 29, 2008
\% Author: Raseong Kim (Purdue University)
\%
\% Inputs
\% eta: eta_F
\% j: FD integral order
\%
\% Outputs
$\% \mathrm{y}$: value of FD integral (the "script F" defined by Blakemore (1982))
\%
\% For more information in Fermi-Dirac integrals, see:
\% "Notes on Fermi-Dirac Integrals (3rd Edition)" by Raseong Kim and Mark
\% Lundstrom at http://nanohub.org/resources/5475
\%
\% References
\% [1]D. Bednarczyk and J. Bednarczyk, Phys. Lett. A, 64, 409 (1978)
\% [2]J. S. Blakemore, Solid-St. Electron, 25, 1067 (1982)
\% [3]X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, Solid-St. Electron, 24, 981 (1981)
\% [4]X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, J. Appl. Phys., 54, 2850 (1983)
if $\mathrm{j}<-1 / 2$
error('The order should be equal to or larger than $-1 / 2$. .)
else
x = eta;
switch j case 0
$y=\log (1+\exp (x)) ; \quad \%$ analytic expression
case $1 / 2$
\% Model proposed in [1]
\% Expressions from eqs. (22)-(24) of [2]
$\mathrm{mu}=\mathrm{x} . \wedge 4+50+33.6^{*} \mathrm{x} .{ }^{*}\left(1-0.68^{*} \exp \left(-0.17^{*}(x+1) .{ }^{\wedge} 2\right)\right)$;
xi = $3^{*} \operatorname{sqrt}(\mathrm{pi}) . /\left(4^{*} \mathrm{mu} . \wedge(3 / 8)\right.$);
$y=(\exp (-x)+x i) \cdot \wedge-1$;
case $3 / 2$
\% Model proposed in [3]
\% Expressions from eq. (5) of [3]
\% The integral is divided by gamma($\mathrm{j}+1$) to make it consistent with [1] and [2].
$\mathrm{a}=14.9$;
b $=2.64$;
c = 9/4;
$y=\left((j+1) * 2^{\wedge}(j+1) . /\left(b+x+\left(a b s(x-b) .^{\wedge} c+a\right) .^{\wedge}(1 / c)\right) .^{\wedge}(j+1) \ldots\right.$
$+\exp (-x) . / \operatorname{gamma}(j+1)) . \wedge-1$./gamma(j+1);
otherwise
\% Model proposed in [4]
\% Expressions from eqs. (6)-(7) of [4]
\% The integral is divided by gamma($j+1$) to make it consistent with [1] and [2].
$a=\left(1+15 / 4^{*}(j+1)+1 / 40 *(j+1)^{\wedge} 2\right)^{\wedge}(1 / 2)$;
$\mathrm{b}=1.8+0.61^{*} \mathrm{j}$;
c = $2+(2-s q r t(2))^{*} 2^{\wedge}(-j)$;
$y=\left((j+1)^{*} 2^{\wedge}(j+1) . /\left(b+x+\left(a b s(x-b) . \wedge c+a^{\wedge} c\right) . \wedge(1 / c)\right) . \wedge(j+1) \ldots\right.$
$+\exp (-x) . / \operatorname{gamma}(j+1)) .^{\wedge}-1$./ gamma(j+1);
end
end
"FD_int_num.m"

```
function [ y N err ] = FD_int_num( eta, j, tol, Nmax )
% Numerical integration of Fermi-Dirac integrals for order j > -1.
% Author: Raseong Kim (Purdue University)
% Date: September 29, }20
% Extended (composite) trapezoidal quadrature rule with variable
% transformation, x= exp(t - exp(t) )
% Valid for eta ~< 15 with precision ~eps with 60~500 evaluations.
%
% Inputs
% eta: eta_F
% j: FD integral order
% tol: tolerance
% Nmax: number of iterations limit
%
% Note: When "eta" is an array, this function should be executed
% repeatedly for each component.
%
% Outputs
% y: value of FD integral (the "script F" defined by Blakemore (1982))
% N: number of iterations
% err: error
%
% For more information in Fermi-Dirac integrals, see:
% "Notes on Fermi-Dirac Integrals (3rd Edition)" by Raseong Kim and Mark
% Lundstrom at http://nanohub.org/resources/5475
%
% Reference
% [1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
% Numerical recipies: The art of scientific computing, 3rd Ed., Cambridge
% University Press, 2007.
for N=1:Nmax
    a=-4.5; % limits for t
    b = 5.0;
    t = linspace( a, b, N+1); % generate intervals
    x = exp(t - exp( -t ) );
    f=x.*(1 + exp(-t ) ).* x.^j./(1+ exp( x - eta ) );
    y = trapz( t, f );
    if N>1 % test for convergence
        err = abs( y - y_old );
        if err < tol
            break;
        end
    end
    y_old = y;
end
if N == Nmax
    error( 'Increase the maximum number of iterations.')
end
y = y ./gamma(j + 1 );
```

