Landauer Approach:

Fermi Window and Current

Professor Mark Lundstrom

Electrical and Computer Engineering
Purdue University
West Lafayette, IN USA

10/1/15
Landauer Approach

\[f_1(E) = \frac{1}{1 + e^{(E-E_{F1})/k_BT}} \]

\[f_2(E) = \frac{1}{1 + e^{(E-E_{F2})/k_BT}} \]

\[I = \frac{2q}{h} \int T(E)M(E)(f_1 - f_2) \, dE \]

transmission, modes (channels), differences in Fermi functions
Channels (modes)

\[M_{1D}(E) = \frac{\hbar}{4} \langle \nu^+_x \rangle D_{1D}(E) \]

\[M_{2D}(E)W = W \frac{\hbar}{4} \langle \nu^+_x \rangle D_{2D}(E) \]

\[M_{3D}(E)A = A \frac{\hbar}{4} \langle \nu^+_x \rangle D_{3D}(E) \]
Transmission

\[\mathcal{T}(E) = \frac{\lambda(E)}{\lambda(E) + L} \]

\(\lambda \) is the “mean-free-path for backscattering”

1) Diffusive: \(L \gg \lambda \) \(\mathcal{T} = \frac{\lambda}{L} \ll 1 \)

2) Ballistic: \(L \ll \lambda \) \(\mathcal{T} = 1 \)

3) Quasi-ballistic: \(L \approx \lambda \) \(\mathcal{T} < 1 \)
Fermi window

\[I = \frac{2q}{h} \int \mathcal{T}(E) M(E) (f_1 - f_2) \, dE \]

Fermi window:
The range of energies over which \((f_1 - f_2) \neq 0\)
Differences in the Fermi levels

\[f_1(E) = \frac{1}{1 + e^{(E - E_{F1})/kT_1}} \]

\[f_2(E) = \frac{1}{1 + e^{(E - E_{F2})/kT_2}} \]

\[E_{F2} = E_{F1} - qV \]

T_2 = T_1

metal contact 1

metal contact 2
Differences in the Fermi levels

\[E_{F2} = E_{F1} - qV \]

\[f_1 \neq f_2 \]

\[f_1 = f_2 \]
Fermi window: Large bias

\[f(E) = \begin{cases} 1 & \text{for } E < E_{F2} \\ 0 & \text{for } E_{F2} < E < E_{F1} \\ 1 & \text{for } E > E_{F1} \end{cases} \]

\[f(E) = \begin{cases} 1 & \text{for } E_{F2} < E < E_{F1} \end{cases} \]

\[T = 0 \text{ K} \]

\[T > 0 \text{ K} \]
Fermi window: small bias

\[T = 0 \text{ K} \]

\[T > 0 \text{ K} \]
Small voltage (linear response)

\[I = \frac{2q}{h} \int \mathcal{F}(E) M(E) (f_1(E) - f_2(E)) \, dE \]

\[f_1(E) = \frac{1}{1 + e^{(E - E_{F1})/k_B T}} \]

\[f_2(E) \approx f_1(E) + \frac{\partial f_1}{\partial E_F} \delta E_F \]

\[f_2(E) \approx f_1(E) + \left(-\frac{\partial f_1}{\partial E} \right)(qV) \]

\[f_2(E) \approx f_1(E) + \left(-\frac{\partial f_1}{\partial E} \right)(-qV) \]
Fermi window: small bias

\[W_F(E) = \left(-\frac{\partial f_0}{\partial E} \right) \]

\[\int W_F(E)\,dE = 1 \]

\[f_1(E) - f_2(E) = W_F(E)(qV) \]

\[T > 0 \text{ K} \]
Near-equilibrium conductance

\[I = \frac{2q}{h} \int \mathcal{T}(E) M(E) \left(f_1(E) - f_2(E) \right) dE \]

\[f_1(E) - f_2(E) = \left(-\frac{\partial f_1}{\partial E} \right)(qV) \]

\[I = GV \quad A \]

\[G = \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left(-\frac{\partial f_0}{\partial E} \right) dE \quad S \]
Quantum of conductance

\[G = \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left(-\frac{\partial f_0}{\partial E} \right) dE \]

\[G(T = 0 \text{ K}) = \frac{2q^2}{h} \mathcal{T}(E_F) M(E_F) \]

\[M(E) = W M_{2D}(E) = W g_v \frac{\sqrt{2m^* E}}{\pi \hbar} \]

For large \(W \), \(M \) is \(\sim W \)

For small \(W \), \(M \)
comes in discrete units.
Quantized conductance

Differences in the Fermi levels (constant V)

near-equilibrium
(small temperature difference)

$|f_1 - f_2| > 0$ so current flows, but the sign depends on whether the states are located above or below E_F (n-type or p-type).

$Lundstrom$ $ECE-656$ $F15$
What about holes?

Landauer expression for electrons:

\[I = \frac{2q}{h} \int \mathcal{T}(E) M(E) (f_1 - f_2) dE \]

Do we need a Landauer expression for holes?
N-type conduction

current is due to electrons flowing in the conduction band
P-type conduction

current is due to electrons flowing in the valence band
What about holes?

All of these expressions refer to electrons in the conduction and valence bands.

n-type

\[I = G_n V \]

\[G_n = \frac{2q^2}{h} \int \mathcal{T}_C(E) M_C(E) \left(-\frac{\partial f_0}{\partial E}\right) dE \]

\[f_0(E) = \frac{1}{1 + e^{(E - F_n)/k_B T}} \]

p-type

\[I = G_p V \]

\[G_p = \frac{2q^2}{h} \int \mathcal{T}_V(E) M_V(E) \left(-\frac{\partial f_0}{\partial E}\right) dE \]

\[f_0(E) = \frac{1}{1 + e^{(E - F_p)/k_B T}} \]
Bipolar conduction

\[I = \frac{2q}{h} \int_{E_1}^{E_2} \mathcal{T}(E) M(E)(f_1 - f_2) dE \]

\[M(E) = M_V(E_V - E) + M_C(E - E_C) \]

\[M_C(E) = A \frac{m_n^*}{2\pi\hbar^2} (E - E_C) \]

\[M_V(E) = A \frac{m_p^*}{2\pi\hbar^2} (E_V - E) \]
Landauer Approach

\[f_1(E) = \frac{1}{1 + e^{(E-E_{F1})/k_BT}} \]

\[f_2(E) = \frac{1}{1 + e^{(E-E_{F2})/k_BT}} \]

\[I = \frac{2q}{h} \int T(E) M(E) (f_1 - f_2) \, dE \]

transmission, modes (channels), differences in Fermi functions